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in a Special Case of Non-Parametric Time Series Forecasting Model
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Abstract—We address a problem of increasing quality of forecasting time series by taking into
account the information about exogenous time series. We aim to improve a non-parametric
forecasting algorithm that minimizes the convolution of a histogram of time series with the loss
function. We propose to adjust the histogram, using mixtures of conditional histograms as a less
sparse alternative to multidimensional histogram and in some cases demonstrate the decrease of
loss compared to the basic forecasting algorithm. To the extent of our knowledge, such approach to
combining endogenous and exogenous time series is original and has not been proposed yet. The
suggested method is illustrated with the data from the Russian Railways.
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1. INTRODUCTION

Considering information about exogenous time series is a way to increase time series forecasting
quality, since they provide additional information, or the “context” for the forecasted (endogenous) time
series [1, 2]. Model structure defines the way to include exogenous time series into the model. For
example, if the structure is linear, and inclusion of the exogenous factor in linear case consists in addition
of several values (or their transformations) of the exogenous time series to the model. This is the way how
ARMA (autoregressive moving average) model [1,3], which is widely used in short-time forecasting [4],
is extended to its exogenous version ARMAX (eXogenous autoregressive moving average) [5]. The
standard ARMA consists of three additive components: the autoregressive average, moving average
and error term. The ARMAX model also includes a combination of exogenous time series.

We aim to improve performance of the hist algorithm, proposed in [6]. The forecasting procedure is
based on obtaining a histogram of endogenous time series. The forecast, produced by hist, is equal to
the center of a bin of the histogram, that corresponds to the optimal value of convoluting the histogram
with the loss function. To increase the forecasting quality of hist, we propose to adjust the histogram
using exogenous time series. Most straightforward way is to specify a histogram of endogenous time
series, conditional on the values of exogenous time series. This can be done by using specific rows,
correspondent to latest realisations of exogenous time series, of a multidimensional histogram, which
approximates joint probability density function of the endogenous and exogenous time series [7]. The
feasibility of such approach is limited with the length of studied time series. This limitation comes from
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Fig. 1. Examples of endogenous x and exogenous cj time series.

high sparsity of multidimensional histograms which grows rapidly with dimensionality (exponentially
on the number of time series). The sparsity can be reduced in some special cases [8, 9]. We suggest
to use a weighted sum of histograms, each conditional on one of exogenous time series. Compared to
evaluation of one histogram, conditional on all exogenous time series, through a multidimensional joint
histogram, the suggested approach is less demanding to the history length, but requires estimation of
more parameters. Histogram adjustment based on histogram mixture requires estimation of n two-
dimensional histograms instead of one (n− 1)-diminsional histogram, which reduces the number of
values to estimate from exponential to linear on n.

Mixture of histograms is an analogy for mixture models, a rather flexible method for density
estimation from the class of Mixture Transition Distribution models [10]. Mixture model indicates
the presence of several distributions in the sample, each represented with a component from the same
parametric family distribution. According to [10], any probability density function an be approximated
with a mixture of gaussian densities with arbitrary precision. For various modiffcations of see, for
example [11–13]. The authors of [14–16] used mixtures of histograms as a more stable alternative to
Gaussian mixture models in object detection in image and video processing. In mixtures of histograms
each component is represented by a histogram instead of a parametric distribution as in classic mixture
models. In the papers [14–16] the bins of component histogram are supposed to coincide, so that the
weighted summation of histograms only effects the probability associated with each bin, but does not
affect the fragmentation of the domain of endogenous variable. The papers [17,18] discuss algebraic
operations with histograms, which allow to introduce a weighted sum of histograms with arbitrary
division of variable domain into intervals.

2. PROBLEM STATEMENT

Let x = {x(t)}T−1
t=1 denote the endogenous time series, with cj = {cj(t)}Tt=1 denoting the j-th ex-

ogenous time series, j = 1, . . . , n. Fig. 1 exemplifies relationships between endogenous and endogenous
time series. Endogenous time series x are depicted with a thin line, each time stamp x(t) marked with a
dot. Bold line represents exogenous time series cj .

2.1. The Hist Algorithm

A histogram H = 〈X,h〉, where X = [X1, . . . ,Xk, . . . ,XK ] is a vector and of bin centers and
h = [h1, . . . , hk, . . . , hK ] is a vector of associated probabilities, defines a probability distribution

hk = P
(
x = Xk

)
,

K∑

k=1

hk = 1.
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Fig. 2. Illustrations of the hist algorithm: convolution of histogram of time series with loss functions at various
placements Xk .

We approximate the distribution of x(t), specifying H as 〈X,h〉

hk =
1

T

T∑

t=1

[x belongs to k-th bin],

where [ · ] is the indicator function, and the bins with centers Xk split the range of x into K intervals of
equal width.

Given a loss function L(x, x̂) : R× R �→ R+ and a histogram estimation H , the forecast hist(L,H)
is equal to a bin center Xk that minimises the convolution

∑

x∈X1,...,XK

hkL(Xk, x)

of histogram H with predefined loss function L at each bin center Xk, k = 1, . . . ,K. The bin center
Xk that corresponds to the minimum value of convolution is then chosen as a forecast value x̂. Fig. 2
illustrates the the convolution procedure. Two kinds of loss function, a squared error (solid line) and a
linear asymmetric error (dashed line) are convoluted with histogram H at different bin centers Xk and
Xk+1 respectively. The forecast x̂ of the hist algorithm is equal to a solution of the following optimization
problem:

x̂ = hist(H,L) = argmin
x∈X1,...,XK

K∑

k=1

hkL(x,Xk). (1)

2.2. Histogram Adjustment

Our goal is to construct an adjusted histogram H , considering observations of both endogenous and
x and exogenous time series c1, . . . , cn to minimize the loss function L. Given L, the forecast depends
on the properties X and h of H . To adjust H , we fix the bin centers Xk (supposing x(t) is stationary)
and vary hk to minimize loss function:

L
(
x(T ), x̂

)
→ min

h∈[0,1]K
with

K∑

k=1

hk = 1. (2)

We look for a solution of the problem (2) in a form of mixture of conditional histograms. To formulate
the expected solution, we introduce the notation H(t) for the adjusted histogram, evaluated at time t.
We suppose that

H(t) ≡ H(x1:t−1, c1:t1 , . . . , c1:tn ),
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Fig. 3. Conditional and marginal histograms.

This notation means that first t− 1 values x1:t−1 of endogenous time series x and t values c1:tn
of exogenous time series cj , 1 ≤ j ≤ n are used to compute probability estimations h. Similarly,
Hj(t) = 〈X,hj〉, j = 1, . . . , n denotes a histogram, conditional on cj , that corresponds to the value
cj(t). Finally, let H0(t) denote marginal histogram of x1:t−1.

Table 1 illustrates relationships between H0 and Hj . Each cell of Table 1 represents one bin pkg of a
multidimensional histogram which approximates the joint probability distribution of x and cj

pkg ≈ P
(
x(t) belongstobin Xk, cj(t) belongstobin Cj

g

)
.

Multidimensional histogram is connected with H0 and Hj through the following relations

h0k =
N∑

g=1

pkg and hjk =
pkg
pg

, pg =
K∑

k=1

pkg.

Fig. 3 illustrates the case of N = 2. The histograms represented by thinner grey bars are conditional
histograms Hj(t) for x1:t−1 with cj(t) belonging to the first and the second bin. The light grey histogram
depicts marginal histogram H0(t).

In this notation the expected solution of the problem (2) is given by

H(T ) = w0H0(T ) +

n∑

j=1

wjHj(T ), (3)

where the vector of weights w = [w0, . . . , wn]
T maximizes likelihood function p(x|w, c1, . . . , cn) of the

model (3). We approximate p(x|w, c1, . . . , cn) with the probability given by histogram H(t):

p
(
x(t)|w, c1:t1 , . . . , c1:tn

)
≈ hk(t),

where k(t) corresponds to the histogram bin that contains x(t):

1

2

(
Xk(t) +Xk(t)−1

)
≤ x(t) <

1

2

(
Xk(t)+1 +Xk(t)

)
.

Assuming x(t) conditioned on w and cj are independent

p
(
x|w, c1, . . . , cn

)
=

T∏

t=tmin

p
(
x(t)|w, c1:t1 , . . . , c1:tn

)
≈

T∏

t=tmin

hk(t),

where tmin is the minimum length of time series x, required to compute a histogram. Since the number
of exogenous time series we use might appear too large, we would like to be able to include only the most
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Table 1. Relations between joint and conditional histograms

Cj
1 . . . Cj

g . . . Cj
N

∑
g

X1 p11 . . . p1g = hj
1pg . . . p1N h0

1

X2 p21 . . . p2g = hj
2pg . . . p2N h0

2

. . . . . . . . . . . . . . . . . . . . .

XK pK1 . . . pK2 = hj
kpg . . . pKN h0

K
∑

k pj1 . . . pjg . . . pjN 1

informative time series cj , j ∈ J ⊆ {0, 1, . . . , n} into the model. Finally, we formulate the optimization
problem as:

w = argmax
w∈[0,1]|J |

1

|J |

T∑

t=1

log

⎛

⎝
∑

j∈J
wjh

j
k(t)

⎞

⎠ ,
∑

j∈J
wj = 1.

where the cost function accounts for the number of selected components |J |.

3. COMPONENTS SELECTION AND WEIGHTS ESTIMATION

Suppose the centers X1, . . . ,XK and Cj
1 , . . . , C

j
N of bins of H0(t) and Hj(t) are fixed. To estimate

the weights wj of mixture components we use a stochastic modification of EM-algorithm [19]. The
algorithm iteratively repeats two steps: simulation step, or resampling of the time series according to the
current estimation of H(t), and EM-step, where the posteriori probabilities wjt of components for each
sample xt are recalculated. The idea is to evaluate the ratio of samples, generated by each component
by simulating the dataset, and to remove the components that generate too few samples.

Suppose we have fixed maximum number of components nmax, minimum length tmin of time series
x; minimum ratio α of samples, generated by each component, and an initial approximation of wj and
J = 0, . . . , n. The procedure of component selection consists of the following steps:

1. Generate a data sample x̃tmin+1:T = {x̃(t)}Tt=tmin+1 according to the probability distribution,
specified by wjt:

x̂t ∼
∑

j=∈J
wjtHj(t).

with wjt initially set equal to wj for all t. Let x̃(t) belong to k(t)-th bin of H(t). On the basis of the data
sample x̃ compute the number Tj of samples, described by j-th component:

Tj =

T∑

t=tmin

[

argmax
j∈J

hjk(t) = j

]

, (4)

where [·] denotes the indicator function. Remove from the model all components that generate Tj <
α(T − tmin) of samples:

J = J \ {j : Tj < α(T − tmin)}.

For the rest of components recompute Tj according to (4) to estimate corresponding weights wj as
wj = Tj/T .

2. Adjust the posteriori probabilities wjt:

wjt =
wjh

j
k(t)∑

l

wlh
l
k(t)

,
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where x(t) belongs to k(t)-th bin.
The steps are repeated until the number J of components is less than nmax.
Following [19] we run the procedure of weight estimation with α = 0 (no component selection) R

times after termination to obtain more stable estimation:

w =
1

r

R∑

i=1

w(i),

where w(i) is the estimation, given by i-th run.

4. COMPUTATIONAL EXPERIMENT

The dataset we used to test the algorithm consists of 38 endogenous time series, each corresponding
to a type of good (such as coal, cox, petroleum and it’s products, etc) transported via national railways.
A point x(t) of time series x corresponds to one day and is equal to the weight in tons of a certain type
of goods, transported at the day t. The time series were measured from January, 2007 to May, 2008.
The set of exogenous time series cj consisted of time series for the prices for Sugar, Petrol, Cuprum,
Zink, Aurum, Nikel, Wheat, Masut, Gas, Tin, Crude oil, Argentum and Plumbum observed during the
period from January, 2007 to May, 2008. Due to the presence of missing values length of time series
after processing equals 228. Since the presence of trend in the time series leads to inadequate results of
forecast when the edges of Hj(t) and categorization intervals are constant in time, we removed the trend
from all time series from the dataset and additionally normalized the values of the time series to [0, 1].

Selecting histogram parameters N , K. Following [7] we choose to set K = �3 3
√
T � = 15. To

select optimal number N of categorization intervals for cj , we have evaluated the probabilities of
including each exogenous time series into the model and used MATLAB’s implementation of Kruskal-
Wallis test [20] to test the hypothesis that the probabilities do not differ for different values of N . We
observed p-values around 0.95, which means that the data was not sufficient to reject hypothesis and
the results of component selection most likely do not depend on N . Moreover, we found no significant
dependance of loss change on N for the studied endogenous time series. Since minimum required length
tmin of time series depends linearly on N we chose minimum value of N = 2.

Results of component selection. In addition to the original exogenous time series cj we considered
the derivative c̊j , c̊(t)j ∈ {0, 1} time series, virtually signalizing whether the time series cj experiences
period of grow on average on last t0 = 10 time stamps.

c̊j(t) =

{
1, if c̄t:t−t0

j > 0,

0, otherwise,
where c̄t:t−t0,j =

1

t0

t0−1∑

τ=0

cj(t− τ).

To add lagging to the model (3), the set of time series {cj , c̊j} was extended with time series

c1:T−lτ
j , c̊1:T−lτ

j , j = 1, . . . n, and x1:T−lτ−1

for l = 0, . . . , L− 1, where L is the maximum lag value. We set component selection parameter α to
0.07 the maximum number nmax of components to nmax = 5 and the maximum lag L to L = 3.

Let x̂0 and x̂Ex denote the forecast (1) of original and the adjusted hist algorithm respectively. To
measure the quality of adjusted algorithm we computed decrease of loss

ΔL = L0 − LEx, L
(
x, x̂

)
= (x− x̂)2

We used stochastic EM algorithm to select a set of exogenous time series cj , j ∈ J and evaluate cor-
responding weights wj of corresponding mixture components. Then we computed adjusted histograms
H(t) at 50 historical points (control points) x(t) using x1:t−1, c1:tj , j ∈ J according to (3). Using H(t)

we forecasted x(t) according to (1) and computed ΔL(t), thus obtaining a sample {ΔL(t)} of loss
change values ΔL(t). We then tested null hypothesis that the expectancy E(ΔL) of loss change ΔL is
zero under alternative E(ΔL) > 0 using Student’s t-test.

The experiments showed that “Plumbum costs” time series were the most informative in terms of
forecasting with adjusted histogram H(t). This suggests that the “Plumbum costs” time series were
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Table 2. Results of including external time series from {cj , cj} into model

Type of load
Exoge-

nous time
series

Time lagτ ΔL ΔL/L0 p-value Positive
change

Negative
change

Petrol and petroleum products c̊ 14 0.15311 0.27873 0.0002305 0.31373 0.039216

Ferrous metals c 7 0.11195 0.29659 0.00099359 0.17647 0

Metal constructions c 7 0.066946 0.1044 0.039325 0.21569 0.058824

Metalwork c 7 0.2046 0.43858 0.00022156 0.64706 0.2549

Chemicals and soda c̊ 14 0.26036 0.41155 4.9025× 10−8 0.47059 0.019608

Construction loads c 7 0.14043 0.34462 0.00011159 0.35294 0.098039

Granulated slag c 7 0.062775 0.17258 0.03783 0.15686 0.039216

Refractories c̊ 14 0.035985 0.086756 0.099958 0.039216 0

Cement c 7 0.25782 0.31271 0.00010496 0.5098 0.058824

Fish c̊ 14 0.25241 0.34342 1.0663× 10−6 0.43137 0.019608

Grain c 7 0.19695 0.29581 5.3108× 10−5 0.39216 0.13725

more sensitive to the changes of some hidden variable that influenced transportation loads than other
exogenous time series from our set. The first column of Table 2 lists those types of load, for which
plumbum time series were chosen as most informative. The second column of Table 2 indicates whether
the original time series c or its derivative c̊, was chosen. The third column lists lagging values τ .
Lagging values were considered proportional to τ = 7, correspondent to one week. Other columns
contain numerical characteristics of performance of adjusted hist: the sample mean loss change ΔL,
average relative loss change ΔL/L0, minimal confidence level required to reject H0 : E(ΔL) = 0 in
favor of E(ΔL) > 0 using Student’s t-test. Lower values indicate better certainty that adjusted method
improves forecasting quality. Only the time series with p-value <0.1 are shown in Table 2. Columns of
Table 2 labeled “Positive change” and “Negative change” list the ratio of time points where forecasts
were strictly improved ΔL(t) > 0 and the ratio of cases where forecasting quality strictly worsened
ΔL(t) < 0 respectively. Note that the ratios of negative and positive ΔL(t) not only does not sum up
to one, but is equally far less in sum than one: for most time series there was no change in forecasting
quality in approximately half of control sample.

5. CONCLUSION AND DISCUSSION
We present a method of combining exogenous and endogenous time series to improve the forecasting

quality of a special case of non-parametric algorithm hist. Our method is based on adjusting the
histogram of endogenous time series by modelling it as a mixture of conditional histograms. We compare
thus extended algorithm with the basic hist and demonstrate the decrease of loss functions in some
points. The constant loss for the rest cases is related to insufficient length of forecasted time series, when
the we had reside to the basic version of hist. We see several ways to extend the presented research. First
is to consider more advanced ways of computing initial histogram, such as kernel estimations, which
allow to use information about a single sample to evaluate several histogram cells, instead of assigning
one sample strictly to one cell. Application of kernel methods may reduce sparsity and decrease the
necessary length of time series, allowing to further improve performance of adjusted hist. Other ways
include allowing time dependance for wj and considering more types of derivative times series.

Alternative way is to extend the hist algorithm is through multivariate quantile regression. Though
there is a considerable number of papers [21–23] devoted to the problem of extending the concept of
quantile regression to a multivariate case, each extension focuses on maintaining some of the features
on univariate quantile regression, and no dominant approach can be singled out. Since the original hist
is a modification of quantile regression, designing a multivariate quantile regression model would provide
a natural way to include exogenous time series into the model.
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