
Incremental Probabilistic Latent Semantic Analysis for
Automatic Question Recommendation

Hu Wu
Institute of Software, Chinese

Academy of Sciences
wuhu@itechs.iscas.ac.cn

Yongji Wang
Institute of Software, Chinese

Academy of Sciences
ywang@itechs.iscas.ac.cn

Xiang Cheng
Peking University

cxwcfea81@yahoo.com.cn

ABSTRACT
With the fast development of web 2.0, user-centric publishing and
knowledge management platforms, such as Wiki, Blogs, and Q &
A systems attract a large number of users. Given the availability
of the huge amount of meaningful user generated content, incre-
mental model based recommendation techniques can be employed
to improve users’ experience using automatic recommendations. In
this paper, we propose an incremental recommendation algorithm
based on Probabilistic Latent Semantic Analysis (PLSA). The pro-
posed algorithm can consider not only the users’ long-term and
short-term interests, but also users’ negative and positive feedback.
We compare the proposed method with several baseline methods
using a real-world Question & Answer website called Wenda. Ex-
periments demonstrate both the effectiveness and the efficiency of
the proposed methods.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Information Search and
Retrieval-Information filtering

General Terms
Algorithms, Experimentation

Keywords
Incremental learning, PLSA, Recommendation System

1. INTRODUCTION
Social-network products are flourishing. Sites such as MySpace,

Facebook, Orkut, and Yahoo! Answers attract millions of users a
day. The rapid growth of the amount of users and items on social-
network sites has made information finding increasingly challeng-
ing. Content-based recommendation tries to solve the challenge by
recommending items similar to those that a given user has liked in
the past, whereas in Collaborative Filtering (CF) one identifies user
whose tastes are similar to those of the given and recommended
items they have liked.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
RecSys’08, October 23–25, 2008, Lausanne,Switzerland.
Copyright 2008 ACM 978-1-60558-093-7/08/10 ...$5.00.

For a typical recommender system, it is common that the old
data (both users and items) keep changing, and the new data be-
come available continually, such as articles in Google news [12].
In this case, we might retrain the model using both old and new
data. However, it is infeasible in practice since batch training is
computationally expensive. To speed up the performance, we need
incremental Collaborative Filtering (ICF) [4] methods that can ef-
ficiently handle new data arriving in a stream, instead of retraining
the whole model from the scratches. The incremental ability of a
recommendation algorithm can not only reduce its computational
cost, but also makes it applicable to large-scale data sets.

In this work, we focus on an incremental learning recommenda-
tion method using Probabilistic Latent Semantic Analysis (PLSA)
for automatic question recommendation in a Question & Answer
(Q & A) website. Probabilistic Latent Semantic Analysis (PLSA)
is widely used in both content based recommendation [1] and col-
laborative filtering [6]. It is based on the observation that user
preference and item characteristics are often governed by a few
latent semantics. To be more specific, PLSA introduces a latent
variable, and decouples the probabilistic dependency between users
and items into the dependency between users and latent semantics
and the dependency between the latent semantics and items, both
in a probabilistic way. Moreover, the probabilistic model could be
learned using the Expectation Maximization (EM) algorithm [3],
and the convergence is guaranteed [16].

Although PLSA has been successfully developed, there are two
main shortcomings. First, the PLSA model is estimated only for
those documents appearing in the training set. Each document
is seen as a random mixture over latent topics. Latent Dirich-
let Allocation (LDA) was proposed to deal with the weakness of
PLSA, where LDA parameters were estimated by the approximate
inference algorithms, such as variational EM and Gibbs Sampling.
PLSA was shown to be a special variant of LDA with a uniform
Dirichlet prior in a maximum a posteriori model [2]. Secondly,
PLSA lacks the incremental ability, i.e. it cannot handle new data
arriving in a stream. To handle streaming data, a naive approach is
that we can re-train the model using both existing training data and
new data. However, it is apparently not efficiently since it is very
computationally expensive. What is more, for some practical ap-
plications, this is infeasible since the system needs real-time online
update. Therefore, we need a fast incremental algorithm without
compromising recommendation quality.

In this paper, we propose an incremental PLSA algorithm. The
advantages of the proposed method can be summarized as:

• Our method is very fast, so that it can be deployed in real-
time recommender systems. To update the model for a new
question, our algorithm needs 0.54 sec. on average, which
can meet the real-time requirement.

99

• The proposed algorithm can take into account both the users’
long-term and short-term interests. The long-term interests
are reflected from all the questions that users already asked,
while short-term interested are reflected from the new ques-
tions he just asked lately.

• The proposed algorithm enjoys the flexibility to make up-
dates based on users’ positive and negative feedback. If a
user gives a high rate to a recommended item, we regard it as
a positive feedback, otherwise it is a negative feedback.

We study the proposed method using the data set from a real-world
Question & Answer website, compared with serval baseline meth-
ods. Experiments demonstrate both the effectiveness and efficiency
of the proposed methods.

The remainder of this paper is organized as follows: In Section 2
we describe Question & Answer systems, and the problem of auto-
matic question recommendation in Q & A systems. In Section 3 we
review basic ideas of PLSA, and describe how to recommend rele-
vant questions using PLSA. In Section 4, we review previous work
on incremental PLSA algorithms and point out the problems with
these existing methods. In Section 5 we present the proposed in-
cremental methods. In Section 6 we compare the proposed method
against four baseline methods using a Q & A data set. We then con-
clude the paper and point out future research directions in Section
7.

2. QUESTION AND ANSWER (Q & A)
SYSTEM

Question & Answer websites (referred to as Q & A system af-
terwards) are becoming popular in recent years, such as Yahoo!
Answers 1, Baidu Zhidao 2 etc.. In Q & A systems, users post ques-
tions to seek help from others. In the meanwhile, users also answer
others’ questions. These sites are becoming huge knowledge bases
in Internet, thus attract millions of users who either ask questions
to seek help or reply questions to seek pleasure by helping others
[19].

Wenda 3 is a Chinese Q & A website launched by Google re-
cently. Currently, Wenda has a hundred thousand users, and the
number of users is still increasing. Given the huge number of users
and questions, there is a challenge problem: it is hard for a user to
precisely and quickly locate the questions and answers that might
interest him [17]. To solve this problem, we implement automatic
question recommend algorithms in Wenda, i.e., when a user views a
question, the system automatically displays related questions to the
user based on the questions (answers) he posted and the question
he is viewing. The recommendation mechanism is illustrated in
Figure 1 (Left). There are two scenarios that incremental learning
should be considered in Q & A systems: (i) A new user registers in
the system; and (ii) A new question (answer) is posted by existing
users.

For a good recommendation system, we also need to consider
two facts. First, users have both long-term and short-term interests.
We can learn users’ long-term interests by accumulating users’ pref-
erence for a long period. So users’ long-term interests are rela-
tively stable. On the other hand, users’ short-term interests play
a more important role on instant recommendation, although they
are instantaneous and unstable. Our algorithm needs to capture
both long-term and short-term interests of users. Secondly, users
can give both positive and negative feedback to the recommended
1http://answers.yahoo.com
2http://zhidao.baidu.com
3http://wenda.tianya.cn

items. If the user gives a high score on a given recommended item,
we refer this as positive feedback, otherwise negative feedback. Our
algorithm needs to learn both positive and negative feedback from
users. The model updating flow is illustrated in Figure 1 (Right).

We next introduce automatic question recommendation using
Probabilistic Latent Semantic Analysis (PLSA).

3. AUTOMATIC QUESTION RECOMMEN-
DATION USING PLSA

In this section, we describe automatic question recommendation
using Probabilistic Latent Semantic Analysis (PLSA). We first give
a brief introduction to PLSA algorithm, and then describe how to
apply it to automatic question recommendation.

3.1 Probabilistic Latent Semantic Analysis
For question recommendation tasks, it is reasonable to assume

the following approximation: the word is independent of the user
when a user wants to express some certain meaning (i.e. the la-
tent semantics is known), so when the latent semantics under the
questions and answers are found, we are able to make recommen-
dation based on similarities on these latent semantics. Therefore,
PLSA could be used to model the users’ profile (represented by the
questions that the user asks or answers) and the questions as well
through estimating the probabilities of the latent topics behind the
words. Because the user’s profile is represented by all the questions
that he/she asks or answers, we only need to consider how to model
the question properly.

Suppose we have N questions denoted as Q and M words in the
dictionary denoted as W. In addition, in order to capture the latent
semantics, K latent topics are introduced notated by< z1, z2, ..., zK >.
Then we consider a user as a document that contains the words that
he used in his questions or answers. A user’s interest is thus repre-
sented by many dyadic pairs < qustioni,word j > where i and j are
their index in the user set and word dictionary, respectively. Based
on the independent assumption made above, we could rewrite the
probability of co-occurrence < qi,w j > as follows:

P(qi,w j) = P(qi)
∑

zk

P(zk |qi)P(w j|zk). (1)

Supposing a uniform distribution of P(qi) for all the questions,
the learning task is boiled down to learning P(zk |qi) and P(w j|zk)
and to update them accordingly when the user’s profile changes. [1]
provided a Expectation Maximization (EM) method for the PLSA
model fitting.

• E-Step: compute posterior probabilities for the latent vari-
ables

P(zk |qi,w j) =
P(w j|zk)P(zk |qi)∑K
l=1 P(w j|zl)P(zl|qi)

, (2)

• M-Step: maximize the expected complete data log-likelihood

P(w j|zk) =

∑N
i=1 n(qi,w j)P(zk |qi,w j)∑M

m=1
∑N

i=1 n(qi,wm)P(zk |qi,wm)
, (3)

P(zk |qi) =

∑M
j=1 n(qi,w j)P(zk |qi,w j)

n(qi)
. (4)

The learning process is iterating the E-Step and M-Step alterna-
tively until some convergence condition (such as Log likelihood) is
satisfied. Typically, 20-50 iterations are needed before converging
[1]. The problem is that, with this algorithm, whenever user’s pro-
file changes, the whole model needs to be retrained from scratch.

100

? ? !... ?
P(z|q)

P(w|z)

P(z|u)

User’s questions and answers

r1 r2 r3 ...

√ × √

Recommended questions
Recommenation

Feedback

Incremental
update

Learnt Model

? questions ! answers

√ postitive feedback × negative feedback

PLSA

Time

(size = weight)

? ? !... ?
Time

?

Recommendation Model

w1, w2, ..., wm

User’s posted questions and answers The question the user is viewing

r1 r2 r3 ...

Recommended questions

(size = weight)

Figure 1: Question recommendation in the Wenda system. Left: Recommendation based on the user’s history posts and the question
that he is currently viewing. Right: Incremental learning model update considering the user’s long-term and short-term interests
and feedback about our recommendations.

This makes the update process could only be done offline. In the
next section, we will see some existing work addressing this prob-
lem.

3.2 Automatic Question Recommendation
To generate the recommended question list, we first learn P(z|q),

the probability of the latent topic given a question, using all the
questions that user has asked or answered. We then calculate P(z|u),
the probability of the latent topic given a user, using the following
Equation 5:

P(z|u) =
1
L

L∑
i=1

P(z|qi), (5)

where {q1, q2, ..., qL} is the list of questions that the user has asked
or answered.

Based on P(z|u) and P(z|q), we can calculate two similarity mea-
sures, namely question-question similarity and user-question simi-
larity using the inner product as follows:

• Similarity between the question that the user is currently view-
ing qc and all the other questions q j:

S qc ,q j =
∑

z

P(z|qc)P(z|q j), (6)

• Similarity between user ui and question q j:

S ui ,q j =
∑

z

P(z|ui)P(z|q j). (7)

Given the similarity between user ui and question q j: S ui ,q j , and
the similarity between other questions and the question that the user
is viewing: S qc ,q j , we could recommend the most related questions
by simply sorting the scores computed as:

Scoreq j = S ui ,q j + S qc ,q j . (8)

Note that the user-question and question-question similarities are
computed online. Therefore, the recommendation list changes in-
stantly whenever a user is viewing a different question or the user
posts a new question or answer.

However, PLSA model retraining is a computational intensive
task that can not be done in real time. We now proceed to explain
how to retrain the model more quickly with the help of incremental
learning.

4. EXISTING PLSA INCREMENTAL
METHODS

Incremental ability is essential when the training examples in
practical recommendation systems become available over time, usu-
ally one at a time [4].

There are some existing work on incremental learning of PLSA.
[1] provided a simple update scheme called Fold-In. The main idea
is to update the P(z|q) part of the model while keeping P(w|z) fixed.
However, P(w|z) can change significantly during EM iteration and
affect P(z|q) as well. Thus, the result of Fold-In might be biased.

Tzu-Chuan Chou et al [5] proposed Incremental PLSA (IPLSA),
a complete Bayesian solution aiming to address the problem of on-
line event detection. For the automatic question recommendation
task, when a new question is posted, both P(z|q) and P(w|z) are
updated as follows:

1. Fold in new questions:

P(z|w, qnew) =
P(w|z)P(z|qnew)∑

z′∈Z P(w|z′)P(z′|qnew)
, (9)

P(z|qnew) =
∑

w∈qnewn(w,qnew)P(z|w,qnew)∑
z′∈Z
∑

w∈qnew n(w, qnew)P(z′|w, qnew)
. (10)

2. Fold in new words:

P(z|wnew, qnew) =
P(qnew|z)P(z|wnew)∑

z′∈Z P(qnew|z′)P(z′|wnew)
, (11)

P(z|wnew) =
∑

q∈Qnew n(wnew, q)P(z|wnew, q)∑
q′∈Qnew n(wnew, q′)

. (12)

3. Update PLSA parameters, all P(w|z) are normalized using
the following formula:

P(w|z) =
∑

q∈Q∪Qnew n(w, d)P(z|w, q)∑
q′∈Q∪Qnew

∑
w′∈q′ n(w′, q′)P(z|w′, q′)

. (13)

For the time complexity, the algorithm needs O(niter · (nnq + noq) ·
(nnw + now) · K) operations to converge whenever there are new
questions added, where nnq is the number of new questions, and
noq is the number of old questions, and nnw is the number of new
words and now is the number of old words, and K is the number
of latent topics, and niter is the number of iterations. Note that the
computational complexity is the same as that of the batched PLSA
algorithm, although less EM iterations are needed.

101

Table 1: Detailed qualitative comparison results of the four models.
Fold-in IPLSA MAP-PLSA Our method

Updated parts during incremental learning P(z|u) P(z|u) and P(w|z) P(z|u) and P(w|z) P(z|u) and P(w|z)
Ability of handling new words during update No Yes Yes Yes

Accuracy Low Low Medium High
Incremental complexity Low High High Medium

Flexibility Low Low Low High
Adaptable to user’s feedback No No No Yes

Chien and Wu proposed another PLSA incremental learning al-
gorithm named MAP-PLSA [10]. Different from the traditional
PLSA learning formula derived using Maximum Likelihood (ML)
assumption, MAP-PLSA updates PLSA parameters using the Max-
imum A Posterior (MAP) as follows:

P̂MAP(w j|zk) =

∑N
i=1 n(qi,w j)P(zk |qi,w j) + (α(n−1)

j,k − 1)∑M
m=1[
∑N

i=1 n(qi,wm)P(zk |qi,wm) + (α(n−1)
m,k − 1)]

,

(14)

P̂MAP(zk |qi) =

∑M
j=1 n(qi,w j)P(zk |qi,w j) + (β(n−1)

k,i − 1)

n(qi) +
∑K

l=1(β(n−1)
l,i − 1)

, (15)

where

α(n)
j,k =

Nn∑
i=1

n(q(n)
i ,w

(n)
j)P(n)(zk |q

(n)
i ,w

(n)
j) + α(n−1)

j,k , (16)

α(0)
j,k = 1 +

N∑
i=1

n(qi,w j)P(zk |qi,w j), (17)

β(n)
k,i =

Mn∑
j=1

n(q(n)
i ,w

(n)
j)P(n)(zk |q

(n)
i ,w

(n)
j) + β(n−1)

k,i , (18)

β(0)
k,i = 1 +

M∑
j=1

n(qi,w j)P(zk |qi,w j). (19)

The advantage of MAP-PLSA is its update efficiency. The time
complexity is O(niter · nnq · ‖nq‖ · K), where ‖nq‖ is the average
number of words of new questions. But the results can also be
biased, especially for P(w|z) according to Equation (14).

Besides the above work, [12], [9], and [7] modified the original
PLSA model and provided some experimental results on how to
achieve the balance between efficiency and accuracy. Banerjee and
Basu proposed online variants of other probabilistic model such as
LDA [15] for news clustering. [8] proposed a novel incremental
algorithm based on non-parametrical Dirichlet Process for the new
topic detection problem.

Table 1 summarizes detailed qualitative comparisons among these
algorithms and our proposed incremental PLSA algorithm. The
“Accuracy” measure is the degree of approximation to the batched
PLSA; this measure affects recommendation precision in our ex-
periments. “Incremental Complexity” is the measure of efficiency
of the update algorithm; “Flexibility” is the measure of whether
the model can reflect the user’s latest interest while still reflecting
user’s long-term interest. “Adaptable to User’s Feedback” indicates
whether the model can update according to the user’s feedback.

We next describe our proposed incremental PLSA methods.

5. OUR METHOD
There are three issues we need to consider for the incremental

task in Q & A systems:

• We need to adjust both word-topic and user-topic probabili-
ties for new posted questions (answers).
• We need to consider both users’ short-term and long-term

interests while updating the model parameters.
• We need to consider both users’ positive and negative feed-

back.

We next propose a novel incremental PLSA learning algorithm
that address the above three problems.

When a user u posts a new question or answers an existing ques-
tion q, the probability of a latent topic given the user P(z|u) is up-
dated accordingly, and so does the probability of words given a
topic, P(w|z). We propose a modified EM scheme based on the
Generalized Expectation Maximization (GEM) [14]. The formulae
for incremental update are as follows:

• E-Step:

P(z|q,w)(n) =
P(z|q)(n)P(w|z)(n)∑

z′ P(z′|q)(n)P(w|z′)(n) . (20)

• M-Step:

P(z|q)(n) =

∑
w n(q,w) × P(z|q,w)(n)∑

z′
∑

w′ n(q,w′) × P(z′|q,w′)(n) , (21)

P(w|z)(n) =

∑
q n(q,w) × P(z|q,w)(n) + α × P(w|z)(n−1)∑

q
∑

w′ n(q,w′) × P(z|q,w′)(n) + α ×
∑

w̃ P(w̃|z)(n−1) ,

(22)

where the superscript (n− 1) denotes the old model parameters and
(n) for the new ones, w′ ∈ qw and w̃ ∈ W are words in this question
and all other words in the dictionary, respectively.

After several EM iterations, we can get a stable value of P(z|q).
After that, P(z|u) could be calculated as:

P(z|u)(n) ∝ P(z|u)(n−1) + β × P(z|q), (23)

where P(z|u)(0) and P(w|z)(0) are initialized randomly for all users
and words. The values of α and β are hyper-parameters that man-
ually selected based on empirical results (see Section ??). The de-
tailed algorithm description are shown in Algorithm 1.

The time complexity of Algorithm 1 is O(niter ·nnq ·‖nnq‖·K+‖uq‖·

K), where niter is the number of iterations, nnq is the number of new
questions, ‖nnq‖ is the average number of words in these questions
and ‖uq‖ is how many users are involved in the discussion of this
question plus the number of users who provide feedback about this
question.

The major advantage of the proposed algorithm is that we can
take into account two different scenarios by adjusting the value of
weight β.

In the first scenario, we want to consider both users’ long-term
and short-term Interests. Suppose user u has posted Nu questions
(answers) before, and q is a new question posted by the user. In-
tuitively, we can set the weight on question q as 1

Nu+1 in order to

102

Algorithm 1: Our Incremental PLSA learning algorithm.
Input: New question q, P(z|u) of the author u for all the latent

topics z, P(w|z) for all the words w in the new question
Output: For all the topics, output updated P(z|u) for the

author, updated P(w|z) for all the words, new
probabilities P(z|q) of the new question

if user u is new then1
for all the z do2

Randomize and normalize P(z|u)(n−1) to ensure that3 ∑
z P(z|u)(n−1)=1 ;

end4

end5
else6

for all the z do7
P(z|q) = P(z|u)(n−1);8

end9

end10
for All the words w appear in the new question do11

if word w is new then12
for all the z do13

Randomize P(w|z) and ensure
∑

w P(w|z) = 1;14
end15

end16

end17
while not convergent do18

for all the latent topics z do19
for all the < q,w > pairs for all the words in the20
question q do

P(z = k|q,w) = P(z=k|q)P(w|z=k)∑
z′ P(z′ |q)P(w|z′) ; // E-Step21

end22

end23
for all the latent topics z do24

P(z = k|q) =
∑

w n(q,w)×P(z=k|q,w)∑
w,z′ n(q,w)×P(z′ |q,w ; //M-Step25

end26
for all the latent topics z do27

for all the words w in the question q do28

P(w|z) = n(q,w)×P(z|q,w)+α×P(w|z)∑
w′ n(q,w′)×P(z|q,w′)+α×

∑
w̃ P(w|z)(n−1) ; //M-Step29

end30

end31

end32
for all the authors u in the question q do33

for all the topics z do34
P(z|u)(n) = P(z|u)(n−1) + β × P(z|q);35
Normalize P(z|u)(n);36

end37

end38

achieve the balance between existing and new questions. However,
to better reflect users’s short-term interests, we might increase the
weight β on question q. Therefore, β needs to be larger than 1

Nu+1 .
Therefore, we can set a higher β value for new questions to better
reflect users’ short-term interests.

In the second scenario, in Q & A systems, the user can give posi-
tive or negative rating to a recommended question, which indicates
whether he is interested in the given question or not. Users’ feed-
back is important and we need consider this information in our in-
cremental algorithm. For the positive feedback, we set the weight
β a positive value. Otherwise, we set the weight β a negative value.
Note that the probability value might be negative if we set β nega-

tive. We need a shift operation to make the value of all probabilities
larger than zero, and then a normalization operation to ensure the
sum of all probabilities equals to one. Therefore, we can take both
users’ positive and negative feedback into considerations.

We next apply the proposed incremental algorithm to a real-
world data set from the Wenda website.

6. EXPERIMENTS
We implemented our proposed method together with other incre-

mental PLSA implementations for the question recommendation
task in the Wenda system. In this section, we give the performance
details of these algorithms.

6.1 The Data Set
Our data set contains the questions and corresponding answers

of users who registered in the Wenda website from October 2007
to April 2008. The details of the data set are shown in Table 2.

Table 2: The Statistical Information of the Evaluation Data Set.

Item Number
Users 108300

Average posts per user 1.64
Questions 38375
Answers 138906
Words † 62187

Average question length ‡ 189 (words)
Feedback 7122

† After word segmentation ‡ Including all the answers to the questions

We apply two preprocessing steps on all the questions and an-
swers: Chinese word segmentation and stop-word filtering. Finally,
we get 62187 words and the average question length is 189 words.
There are 7122 feedback provided by Wenda users about the rec-
ommended questions. The average number of answers per question
is around 3.62. Figure 2 shows the total number of questions and
answers in the Wenda website since its launch.

Figure 2: The increase of the number of questions and an-
swers in Wenda. The x-coordinate is the number of days before
2008.4.30 and the y-coordinate is the number of questions and
answers.

103

Table 3: Update time (in seconds) comparison among four incremental schemes and batched PLSA on Wenda data set.
Batched PLSA Fold-In IPLSA MAP-PLSA Our method

Iterations
Total Time One Question Total Time One Question Total Time One Question Total Time One Question Total Time One Question

5 266 0.54 34 0.06 99 0.19 88 0.17 80 0.16
10 528 1.04 69 0.13 195 0.38 157 0.31 148 0.28
15 796 1.58 103 0.20 292 0.58 223 0.44 213 0.42
20 1062 2.12 138 0.27 389 0.77 288 0.57 273 0.54

Time Complexity † O(niter · (nnq+noq) · (nnw+

now) · K)
O(niter · nnq · ‖nq‖ · K) O(niter · (nnq+noq) · (nnw+

now) · K)
O(niter · nnq · ‖nq‖ · K) O(niter · nnq · ‖nq‖ · K)

† niter is the number of iterations, nnq is the number of new questions, noq is the number of old questions, nnw is the number of
new words, now is the number of old words and ‖nq‖ is the average length of new questions. K is the number of latent topics

Table 4: Model Perplexity comparison among four incremental schemes and batched PLSA on Wenda data set.

Iterations Batched PLSA Fold-In IPLSA MAP-PLSA Our method
5 1364.14 1612.15 256561.81 821.86 419.83

10 698.11 1575.91 253023.00 695.00 295.40
15 555.98 1551.02 251498.60 625.49 152.47
20 515.73 1534.14 250698.13 576.60 112.25

Table 5: Recommendation precision comparison among four incremental schemes and batched PLSA on Wenda data set.

Iterations Batched PLSA Fold-In IPLSA MAP-PLSA Our method
5 40% 33% 20% 35% 42%
10 51% 41% 25% 47% 54%
15 60% 48% 28% 58% 63%
20 71% 59% 32% 61% 75%

6.2 Evaluation Metrics
We use three measures to evaluate both the effectiveness and ef-

ficiency of the proposed method in comparison with four baseline
methods, namely batched PLSA, Fold-In, IPLSA, and MAP-PLSA.

The first measure is the update time, which indicates how fast
the algorithm to update existing model parameters when new data
arrives. The measure of update time measures the efficiency of the
algorithm. To measure the effectiveness of different algorithms, we
propose to use two measures: perplexity [1] and precision [10].

The perplexity, widely used in language modeling, is to measure
the generalization ability of the model, defined as:

Perplexity(Dtest) = exp
{
−

∑
i, j n′(qi,w j) log P(w j|qi)∑

i, j n′(qi,w j)

}
, (24)

where P(w j|qi) is the probability of the word w j appears in question
qi. P(w j|qi) is calculated as follows:

P(w j|qi) =
K∑

k=1

P(w j|zk)P(zk |qi). (25)

A lower perplexity score indicates better generalization ability.
Besides the perplexity, the users’ judgement of recommenda-

tion results is important and essentially the ultimate goal of a rec-
ommendation system. The better the recommendation results, the
more the users will click on the recommended items. However, it
is a subjective task to evaluate users’ judgement since it is hard or
even impossible to get a well-defined ground-truth. We thus asked
10 volunteers to do manual ratings on different recommendation al-
gorithms. That is, each user is asked to give two rates (relevant vs.
non-relevant) independently to each of the 20 recommended ques-
tions produced by different algorithms. Finally, the precision of the

recommendation algorithm is calculated as:

Precision =
#Relevant recommendations

#All recommendations
.

There are some hyper-parameters in our algorithm. In our exper-
iments, we set the number of latent topics 64, and the default α is
0.5. For the question or answer that the user posts, the β value in
Equation 23 is 0.25. While for the user’s positive and negative feed-
back, the β values are 0.5 and −0.5, respectively. We next present
our experiment results.

6.3 Experiment Results
We first show the learned latent topics using the PLSA model.

Figure 3 lists six topics from 64 latent topics. Each topic is rep-
resented by its top 20 most probable words, i.e., the words are or-
dered according to P(w|z). We can see that the six latent topics
are roughly mapping into six topics, namely Emotion, Health, Soft-
ware, Travel, Family, and Work.

Table 3, 4, and Table 5 summarize the comparison results be-
tween our algorithm and the four baseline methods in terms of up-
date time, perplexity, and precision respectively.

Table 3 shows the total time spent to incremental update using
500 questions. We can see that batched PLSA is the slowest while
Fold-In is the fastest method. This coincides well with our theoret-
ical analysis of time complexity shown in the last column in Table
3. We can also see that it costs 0.54 second to process one ques-
tion on average using our method. This indicates our incremental
algorithm is applicable to real-time online systems.

Table 4 shows the perplexity comparison between our algorithm
and four baseline methods. The smaller the value of perplexity, the
better the performance. We can see that our method achieve the
best perplexity results among all the methods. This indicates that
our method enjoy a better generalization ability.

Table 5 summarizes the precision of the different algorithms. We

104

Figure 3: Top words in 6 topics (Ordered by probability).

can see that our method outperforms the batched PLSA, and other
incremental methods. The reason is that our method takes into ac-
count uses’ short-term interests (setting a bigger weight β) while
batched PLSA somehow mixed both users’ long-term and short-
term interests.

Figure 4 shows the comparison of recommendation results of
four incremental algorithms with respect to different number of up-
dates. We can see that the precision of our method improves with
the the increase of update numbers, while this trend is not consis-
tent for other methods.

Figure 5 and 6 show the recommendation precision after users
giving positive and negative feedback about a recommendation re-
spectively. We can see that the precision can change with the ad-
justment of the weight β value. In specific, for positive feedback,
we set β positive values for better performances, while for negative
feedback, we set β negative values to achieve a higher precision.
Note that the performance is linearly improved with respect to the
value of β. Usually, the value of β is around 0.5, we achieved the
best precision.

We illustrate the process of positive and negative feedback with
an example shown in Figure 7. In the figure, the system first auto-
matically recommends a list of questions to the user. The questions
are roughly about two topics: language study related questions, and
finance related questions. Note that the rankings of language and
finance related questions are mixed. The user first gives a positive
feedback about Question 1 on language. The system updates the
recommendation list instantly, and provides an updated list (Figure
7 (ii)). In this list, language related questions are all ranked higher
than those of finance related questions. After that, the user gives
a negative feedback about a finance related question. Accordingly,
our system updates the recommendation list a second time. We can
see that all the recommended questions are related to language, and
all finance related questions disappear from the recommendations
(Figure 7 (iii)).

7. CONCLUSIONS AND FUTURE WORK
In this paper we presented an incremental automatic question

recommendation algorithm based on probabilistic latent semantic
analysis. The incremental algorithm can update existing model

1 2 3 4 5 6 7 8 9 10
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Update

P
r
e
c
i
s
i
o
n

(
%
)

Fold-in

Incremental PLSA

MAP PLSA

Our method

Figure 4: Comparison of recommendation precision of differ-
ent incremental PLSA algorithms during 10 updates (20 itera-
tions for each update).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1
0

10

20

30

40

50

60

70

80

90

100

Beta

P
r
e
c
i
s
i
o
n

(
%
)

Figure 5: The recommendation precision for different β values
after user giving a positive feedback about a recommendation.

parameters when new data arrives without re-training the whole
model from the scratches. Our method can also consider not only
users’ short-term and long-term interests, but also users’ positive
and negative feedback. Experiments on a real-world Q & A data set
demonstrated both the efficiency and effectiveness of the proposed
algorithm.

We have two future work items. First, the proposed incremental
algorithm is general as it can be not only applied to other recom-
mendation tasks, but also extendable to other probabilistic latent
topic models, such as Latent Dirichlet Allocation (LDA). In future,
we plan to extend our work to both new models, such as LDA, and
new recommendation applications. Second, it is crucial to evalu-
ate performance of incremental algorithms. We think users’ click
information is a good indicator of whether he likes (or dislikes)
the recommended items. We will use this information for a better
evaluation of different recommendation algorithms.

105

-1.1 -1 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0
0

10

20

30

40

50

60

70

80

90

100

Beta

P
r
e
c
i
s
i
o
n

(
%
)

Figure 6: The recommendation precision for different β values
after user giving a negative feedback about a recommendation.

8. ACKNOWLEDGEMENT
We would like to thank Sha Huang for preparing the data and

Xiance Si for generating some figures.

9. REFERENCES
[1] Thomas Hofmann. Unsupervised Learning by Probabilistic

Latent Semantic Analysis. Maching Learning Journal, Vol.
42, No. 1-2, pp. 177-196, 2001.

[2] M. Girolami and A. Kaban. On an Equivalence Between
PLSI and LDA. In: Proc. of SIGIR, pp. 433-434, 2003.

[3] Dempster A. P., Laird N. M., and Rubin D. B.. Maximum
Likelihood from Incomplete Data via the EM Algorithm.
Journal of the Royal Statistical Society, Series B, Vol. 39,
No. 1, pp. 1-38, 1977.

[4] Christophe G. Carrier. A Note on the Utility of Incremental
Learning. AI Communications, Vol. 13, No. 4, pp. 215-223,
2000.

[5] T. C. Chou and M.C Chen. Using Incremental PLSA for
Threshold Resilient Online Event Anlysis. IEEE Transaction
on Knowledge and Data Engineering, Vol. 20, No. 3, pp.
289-299, 2008.

[6] T. Hofmann. Latent Semantic Models for Collaborative
Filtering. ACM Transaction Information System, Vol. 22, No.
1, pp.89-115, 2004.

[7] L. Zhang and C. Li, etc.. An Efficient Solution to Factor
Drifting Problem in the PLSA Model. In: Proc. of the The
Fifth International Conference on Computer and Information
Technology, pp.175-181, 2005.

[8] J. Zhang, Z. Ghahramani, and Y. Yang. A Probabilistic
Model for Online Document Clustering with Applications to
Novelty Detection. In Proc. of NIPS, pp. 1617-1624, 2005.

[9] Arun C. Surendran and Suvrit Sra. Incremental Aspect
Models for Mining Document Streams. 10th European
Conferences on Principles and Practice of Knowledge
Discovery, pp. 633-640, 2006.

[10] J. T. Chien and M. S. Wu. Adaptive Bayesian Latent
Semantic Analysis. IEEE Transactions on Audio, Speech,
and Language Processing, Vol. 16, No. 1, pp. 198-207, 2008.

[11] B. Marlin. Collaborative Filtering: A Machine Learning
Perspective. Master’s thesis, University of Toronto, 2004.

++

--

Question 1Question 1(ii) The user gives positive feedback to question
1 on language, the updated recommendation list:

(i) The initial recommendation list:

(iii) The user gives negative feedback to question 5
on finance, the updated recommendation list: Question 5Question 5

√√

××

Figure 7: The recommendation list changes after the user giv-
ing feedback about the recommended questions.

[12] Das A., Datar M., Garg A. and Rajaram S.. Google News
Personalization: Scalable Online Collaborative Filtering. In:
Proc. of the 16th Int. Conf. on World Wide Web, pp. 270-280,
2007.

[13] D. M. Blei, A. Ng, and M. I. Jordan. Latent Dirichlet
Allocation. Journal of Machine Learning Research , 3,
993-1022, 2003.

[14] R. M. Neal and G. E. Hinton. A View of the EM Algorithm
that Justifies Incremental, Sparse, and other Variants. In
Learning in Graphical Models. Kluwer Academic Press, pp.
355-368, 1998.

[15] Arindam Banerjee and Sugato Basu. Topic Models over Text
Streams: A Study of Batch and Online Unsupervised
Learning. In: Proc. of the SIAM International Conference on
Data Mining (SDM), pp.437-442, 2007.

[16] Asela Gunawardana, William Byrne. Convergence Theorems
for Generalized Alternating Minimization Procedures. The
Journal of Machine Learning Research, Vol. 6, pp.
2049-2073, 2005.

[17] Y. B. Cao, H. Z. Duan, C. Y. Lin, Y. Yu, and H. W. Hon.
Recommending Questions Using the MDL-based Tree Cut
Model. In: Proc. of the 17th Int. Conf. on World Wide Web,
pp. 81-90, 2008.

[18] Lada A. Adamic, J. Zhang, and etc.. Knowledge Sharing and
Yahoo Answers: Everyone Knows Something. In: Proc. of
the 17th Int. Conf. on World Wide Web, pp. 665-674, 2008.

[19] Z. Gyöngyi, G. Koutrika, etc.. Questioning Yahoo! Answers.
First WWW Workshop on Question Answering on the Web,
2008.

106

