Convexity theory

Victor Kitov

Table of Contents

(1) Convex functions
(2) Strictly convex functions
(3) Concave \& strictly concave functions

4 Kullback-Leibler divergence

Convex sets

Definition 1

Set X is convex if $\forall x, y \in X, \forall \alpha \in(0,1)$:

$$
\alpha x+(1-\alpha) y \in X
$$

We will suppose that all functions, considered in this lecture will be defined on convex sets.

Convex functions ${ }^{1}$

Definition 2

Function $f(x)$ is convex on a set X if $\forall \alpha \in(0,1], x_{1} \in X, x_{2} \in X$:

$$
f\left(\alpha x_{1}+(1-\alpha) x_{2}\right) \leq \alpha f\left(x_{1}\right)+(1-\alpha) f\left(x_{2}\right)
$$

${ }^{1}$ Using norm axioms, prove that any norm will be a convex function.

Multivariate and univariate convexity

Theorem 1

Let $f: \mathbb{R}^{D} \rightarrow \mathbb{R} . f(x)$ is convex $<=>g(\alpha)=f(x+\alpha v)$ is 1-D convex for $\forall x, v \in \mathbb{R}^{D}$ and $\forall \alpha \in \mathbb{R}$ such that $x+\alpha v \in \operatorname{dom}(f)$.
$=>$ Take $\forall x, v \in \mathbb{R}^{D}$ and $\forall \alpha_{1}, \alpha_{2}, \beta \in \mathbb{R}$. Using convexity of f :

$$
\begin{aligned}
& g\left(\beta \alpha_{1}+(1-\beta) \alpha_{2}\right)=f\left(x+v\left(\beta \alpha_{1}+(1-\beta) \alpha_{2}\right)\right) \\
& \quad=f\left(\beta\left(x+\alpha_{1} v\right)+(1-\beta)\left(x+\alpha_{2} v\right)\right)
\end{aligned}
$$

$$
\leq \beta f\left(x+\alpha_{1} v\right)+(1-\beta) f\left(x+\alpha_{2} v\right)=\beta g\left(\alpha_{1}\right)+(1-\beta) g\left(\alpha_{2}\right)
$$

so $g(\alpha)$ is convex.
$<=$ Take $\forall x, y \in \operatorname{dom}(f)$ and $\forall \alpha \in(0,1)$. Then using convexity of $g(\alpha)=f(x+\alpha(y-x))$:

$$
\underbrace{g(\alpha)}_{(1-\alpha) x+\alpha y)}=g(0 \cdot(1-\alpha)+1 \cdot \alpha) \leq(1-\alpha) \underbrace{g(0)}_{f(x)}+\alpha \underbrace{g(1)}_{f(y)}
$$

Properties

Theorem 2

Suppose $f(x)$ is twice differentiable on dom(f). Then the following properties are equivalent:
(1) $f(x)$ is convex
(2) $f(y) \geq f(x)+\nabla f(x)^{T}(y-x) \quad \forall x, y \in \operatorname{dom}(f)$
(3) $\nabla^{2} f(x) \succeq 0 \quad \forall x \in \operatorname{dom}(f)$

We will prove theorem 2 by proving that $1 \Leftrightarrow 2$ and $2 \Leftrightarrow 3$.

Proof $1=>2$

By definition of convexity $\forall \lambda \in(0,1), x, y \in \operatorname{dom}(f)$:

$$
\begin{gathered}
f(\lambda y+(1-\lambda) x) \leq \lambda f(y)+(1-\lambda) f(x)=\lambda(f(y)-f(x))+f(x) \Rightarrow \\
f(y)-f(x) \geq \frac{f(x+\lambda(y-x))-f(x)}{\lambda}
\end{gathered}
$$

In the limit $\lambda \downarrow 0$:

$$
f(y)-f(x) \geq \nabla f^{T}(x)(y-x)
$$

Here we used Taylor's expansion

$$
f(x+\lambda(y-x))=f(x)+\nabla f(x)^{T} \lambda(y-x)+o(\lambda\|y-x\|)
$$

Proof $2=>1$

Take $\forall x, y \in \operatorname{dom}(f)$. Apply property 2 to x, y and $z=\lambda x+(1-\lambda) y$. We get

$$
\begin{align*}
& f(x) \geq f(z)+\nabla f^{T}(z)(x-z) \tag{1}\\
& f(y) \geq f(z)+\nabla f^{T}(z)(y-z) \tag{2}
\end{align*}
$$

Multiplying 1 by λ and 2 by $(1-\lambda)$ and adding, we get

$$
\begin{gathered}
\lambda f(x)+(1-\lambda) f(y) \geq f(z)+\nabla f^{T}(z)(\lambda x+(1-\lambda) y-z) \\
=f(z)=f(\lambda x+(1-\lambda) y)
\end{gathered}
$$

Proof $2=>3$, 1 dimensional case

Take $\forall x, y \in \operatorname{dom}(f), y>x$. Following property 2, we have:

$$
\begin{aligned}
& f(y) \geq f(x)+f^{\prime}(x)(y-x) \\
& f(x) \geq f(y)+f^{\prime}(y)(x-y)
\end{aligned}
$$

So

$$
f^{\prime}(x)(y-x) \leq f(y)-f(x) \leq f^{\prime}(y)(y-x)
$$

After dividing by $(y-x)^{2}$ we get

$$
\frac{f^{\prime}(y)-f^{\prime}(x)}{y-x} \geq 0 \quad \forall x, y, x \neq y
$$

Taking $y \rightarrow x$ we get

$$
f^{\prime \prime}(x) \geq 0 \quad \forall x \in \operatorname{dom}(f)
$$

Proof $3=>2$

By mean value version of Taylor theorem we get for some $z \in[x, y]$:

$$
\begin{aligned}
f(y) & =f(x)+\nabla f(x)(y-x)+\frac{1}{2}(y-x)^{T} \nabla^{2} f(z)(y-x) \\
& \geq f(x)+\nabla f(x)(y-x)
\end{aligned}
$$

since $\nabla^{2} f(z) \succcurlyeq 0 \quad \forall z$ by condition 3.

$2=>3$, 1 dimensional case

For any $x, y, \lambda \in[0,1]$ by Taylor expansion we get:

$$
\begin{aligned}
f(x+\lambda(y-x)) & =f(x)+f^{\prime}(x) \lambda(y-x)+\frac{1}{2} f^{\prime \prime}(x) \lambda^{2}(y-x)^{2}+o\left(\lambda^{3}\right) \\
& \geq f(x)+f^{\prime}(x)(y-x)
\end{aligned}
$$

In the limit $\lambda \rightarrow 0$ we get $f^{\prime \prime}(x) \geq 0$.

Proof $2=>3$ for D-dimensional case

From theorem 1 convexity of $f(x)$ is equivalent to convexity of $g(\alpha)=f(x+\alpha v) \forall x, v \in \mathbb{R}^{D}$ and $\alpha \in \mathbb{R}$ such that $z=x+\alpha v \in \operatorname{dom}(f)$. From property 3 this is equivalent to

$$
g^{\prime \prime}(\alpha)=v^{T} \nabla^{2} f(x+\alpha v) v \geq 0
$$

Because z and v are arbitrary, last condition is equivalent to $\nabla^{2} f(x) \succcurlyeq 0$.

Optimality for convex functions

Theorem 3

Suppose convex function $f(x)$ satisfies $\nabla f\left(x^{*}\right)=0$ for some x^{*}. Then x^{*} is the global minimum of $f(x)$.

Proof. Since $f(x)$ is convex, then from condition 2 of theorem $2 \forall x, y \in \operatorname{dom}(f)$:

$$
f(x) \geq f(y)+\nabla f^{T}(y)(x-y)
$$

Taking $y=x^{*}$ we have

$$
f(x) \geq f\left(x^{*}\right)+\nabla f^{T}\left(x^{*}\right)\left(x-x^{*}\right)=f\left(x^{*}\right)
$$

Since x was arbitrary, x^{*} is a global minimum.

Optimality for convex functions ${ }^{3}$

Comments on theorem (3):

- $\nabla f\left(x^{*}\right)=0$ is necessary condition for local minimum. Together with convexity it becomes sufficient condition.
- $\nabla f\left(x^{*}\right)=0$ without convexity is not sufficient for any local optimality.
Properties of minimums of convex function defined on convex set ${ }^{2}$:
- Set of global minimums is convex
- Local minimum is global minimum

[^0]
Jensen's inequality

Theorem 4

For any convex function $f(x)$ and random variable X it holds that

$$
\mathbb{E}[f(X)] \geq f(\mathbb{E} X)
$$

Proof. For simplicity consider differentiable ${ }^{4} f(x)$. From property 2 of theorem $2 \forall x, y \in \operatorname{dom}(f)$:

$$
f(x) \geq f(y)+\nabla f^{T}(y)(y-x)
$$

By taking $x=X$ and $y=\mathbb{E} X$, obtain

$$
f(X) \geq f(\mathbb{E} X)+\nabla f^{T}(\mathbb{E} X)(\mathbb{E} X-X)
$$

After taking expectation of both sides, we get

$$
\mathbb{E} f(X) \geq f(\mathbb{E} X)+\nabla f^{T}(\mathbb{E} X)(\mathbb{E} X-\mathbb{E} X)=f(\mathbb{E} X)
$$

${ }^{4}$ for general proof consider sub-derivatives, which always exist.

Alternative proof of Jensen's inequality

- Convexity $=>$ by induction for $\forall K=2,3, \ldots$ and $\forall p_{k} \geq 0: \sum_{k=1}^{K} p_{k}=1$

$$
\begin{equation*}
\sum_{k=1}^{K} f\left(p_{k} x_{k}\right) \leq \sum_{k=1}^{K} p_{k} f\left(x_{k}\right) \tag{3}
\end{equation*}
$$

- For r.v. X_{K} with $P\left(X_{K}=x_{i}\right)=p_{i}$ (3) becomes

$$
\begin{equation*}
f\left(\mathbb{E} X_{K}\right) \leq \mathbb{E} f\left(X_{K}\right) \tag{4}
\end{equation*}
$$

- For arbitrary X we may consider $X_{K} \uparrow X$. In the limit $K \rightarrow \infty$ (4) becomes ${ }^{5}$

$$
f(\mathbb{E} X) \leq \mathbb{E} f(X)
$$

${ }^{5}$ Strictly speaking you need to prove continuity of f and \mathbb{E} here.

Illustration of Jensen's inequality

Generating convex functions ${ }^{6}$

- Any norm is convex
- If $f(\cdot)$ and $g(\cdot)$ are convex, then
- $f(x)+g(x)$ is convex
- $F(x)=f(g(x))$ is convex for non-decreasing $f(\cdot)$
- $F(x)=\max \{f(x), g(x)\}$ is convex
- These properties can be extrapolated on any number of functions.
- If $f(x)$ is convex, $x \in \mathbb{R}^{D}$, then for all $\alpha>0, Q \in \mathbb{R}^{D \times D}$, $Q \succcurlyeq 0, B \in \mathbb{R}^{K \times D}, c \in \mathbb{R}^{K}, K=1,2, \ldots$ the following functions are also convex:
- $\alpha f(x)$ is convex
- $B^{T} x+c$
- $x^{\top} Q x+B x+c$,
- $F(x)=f(B x+c)$, for $x \in \mathbb{R}^{D}$,
${ }^{6}$ Prove these properties.

Exercises

Are the following functions convex?

- $f(x)=|x|$
- $f(x)=\|x\|_{1}+\|x\|_{2}^{2}$
- $f(x)=\left(3 x_{1}-5 x_{2}\right)^{2}+\left(4 x_{1}-2 x_{2}\right)^{2}$
- $x \ln x,-\ln x,-x^{p}$ for $x>0, p \in(0,1)$.
- $x^{p}, p>1$.
- $\ln \left(1+e^{-x}\right),[1-x]_{+}$
- $F(w)=\sum_{n=1}^{N}\left[1-w^{T} x_{n}\right]_{+}+\lambda \sum_{d=1}^{D}\left|w_{d}\right|$
- $F(w)=\sum_{n=1}^{N} \ln \left(1+e^{-w^{\top} x_{n}}\right)+\lambda \sum_{d=1}^{D} w_{d}^{2}$

Exercises

Suppose $f(x)$ and $g(x)$ are convex. Can the following functions be non-convex?

- $f(x)-g(x), f(x) g(x), f(x) / g(x),|f(x)|, f^{2}(x)$, $\min \{f(x), g(x)\}$
Suppose $f(x)$ is convex, $f(x) \geq 0 \forall x \in \operatorname{dom}(f), k \geq 1$. Can $g(x)=f^{k}(x)$ be non-convex?

Table of Contents

(1) Convex functions

(2) Strictly convex functions
(3) Concave \& strictly concave functions

4 Kullback-Leibler divergence

Strictly convex functions ${ }^{7}$

Definition 3

Function $f(x)$ is strictly convex on a set X if $\forall \alpha \in(0,1], x_{1}, x_{2} \in X, x_{1} \neq x_{2}:$

$$
f\left(\alpha x_{1}+(1-\alpha) x_{2}\right)<\alpha f\left(x_{1}\right)+(1-\alpha) f\left(x_{2}\right)
$$

${ }^{7}$ Prove that global minimum of strictly convex function defined on convex set is unique.

Criterion for strict convexity

Theorem 5

Function $f(x)$ is strictly convex $<=>\forall x, y \in \operatorname{dom}(f), x \neq y$:

$$
\begin{equation*}
f(y)>f(x)+\nabla f(x)^{T}(y-x) \tag{5}
\end{equation*}
$$

$<=$ The same as proof $2=>1$ for theorem 2 with replacement $\geq \rightarrow>$.

Criterion for strict convexity

$=>$ Using property 2 of theorem 2 we have

$$
\begin{equation*}
\forall x, z: \quad f(z) \geq f(x)+\nabla f(x)^{T}(z-x) \tag{6}
\end{equation*}
$$

Suppose (5) does not hold, so
$\exists y: f(y)=f(x)+\nabla f(x)^{T}(y-x)$. It follows that

$$
\begin{equation*}
\nabla f(x)^{T}(y-x)=f(y)-f(x) \tag{7}
\end{equation*}
$$

Consider $u=\alpha x+(1-\alpha) y$ for $\forall \alpha \in(0,1)$. Using (6) and (7):

$$
\begin{gathered}
f(u)=f(\alpha x+(1-\alpha) y) \geq f(x)+\nabla f(x)^{T}(u-x) \\
=f(x)+\nabla f(x)^{T}(\alpha x+(1-\alpha) y-x) \\
=f(x)+\nabla f(x)^{T}(1-\alpha)(y-x) \\
=f(x)+(1-\alpha)(f(y)-f(x))=(1-\alpha) f(y)+\alpha f(x)
\end{gathered}
$$

- Obtained inequality $f(\alpha x+(1-\alpha) y) \geq(1-\alpha) f(y)+\alpha f(x)$ contradicts strict convexity. So (6) should hold as strict inequality (5).

Jensen's inequality

Theorem 6

For strictly convex function $f(x)$ equality in Jensen's inequality

$$
\mathbb{E}[f(X)] \geq f(\mathbb{E} X)
$$

holds $<=>X=\mathbb{E} X$ with probability 1.
Proof. 1) Consider $X \neq \mathbb{E} X$ with probability 1:
From theorem (5) $\forall x \neq y \in \operatorname{dom}(f)$:

$$
f(x)>f(y)+\nabla f^{T}(y)(y-x)
$$

By taking $x=X$ and $y=\mathbb{E} X$, obtain

$$
f(X)>f(\mathbb{E} X)+\nabla f^{T}(\mathbb{E} X)(\mathbb{E} X-X)
$$

After taking expectation of both sides, we get

$$
\mathbb{E} f(X)>f(\mathbb{E} X)+\nabla f^{T}(\mathbb{E} X)(\mathbb{E} X-\mathbb{E} X)=f(\mathbb{E} X)
$$

Jensen's inequality

2) Consider case $X=\mathbb{E} X$ with probability 1 .

In this case with probability 1

$$
f(X)=f(\mathbb{E} X)
$$

which after taking expectation becomes

$$
\mathbb{E} f(X)=\mathbb{E} f(\mathbb{E} X)=f(\mathbb{E} X)
$$

Properties of strictly convex functions ${ }^{10}$

Properties of minimums of strictly convex function defined on convex set ${ }^{8}$:

- Global minimum is unique.
- If $\nabla^{2} f(x) \succ 0 \forall x \in \operatorname{dom}(f)$, then $f(x)$ is strictly convex
- proof: use mean value version of Taylor theorem and strict convexity criterion (5).
- strict convexity does not imply $\nabla^{2} f(x) \succ 0 \forall x \in \operatorname{dom}(f)^{9}$

[^1]
Table of Contents

(1) Convex functions
(2) Strictly convex functions
(3) Concave \& strictly concave functions

4 Kullback-Leibler divergence

Concave functions

Definition 4

Function $f(x)$ is concave on a set X if
$\forall \alpha \in(0,1], x_{1} \in X, x_{2} \in X:$

$$
f\left(\alpha x_{1}+(1-\alpha) x_{2}\right) \geq \alpha f\left(x_{1}\right)+(1-\alpha) f\left(x_{2}\right)
$$

Definition 5

Function $f(x)$ is strictly concave on a set X if $\forall \alpha \in(0,1], x_{1}, x_{2} \in X, x_{1} \neq x_{2}$:

$$
f\left(\alpha x_{1}+(1-\alpha) x_{2}\right)>\alpha f\left(x_{1}\right)+(1-\alpha) f\left(x_{2}\right)
$$

Concave function example

Properties of concave functions

- $f(x)$ is convex $\Longleftrightarrow-f(x)$ is concave
- Differentiable function $f(x)$ is concave $<=>\forall x, y \in \operatorname{dom}(f)$:

$$
f(y) \leq f(x)+\nabla f(x)^{T}(y-x)
$$

- Twice differentiable function $f(x)$ is concave $<=>\forall x \in \operatorname{dom}(f): \nabla^{2} f(x) \succcurlyeq 0$
- Global maximums of concave function on convex set form a convex set.
- Local maximum of a concave function is global
- $\nabla f\left(x^{*}\right)=0<=>x^{*}$ is global maximum.
- Jensen's inequality: for random variable X and concave $f(x)$:

$$
\mathbb{E}[f(X)] \leq f(\mathbb{E} X)
$$

- equality is achieved $<=>f$ is linear on $\{x: P(X=x)>0\}$.
- this holds when $X=\mathbb{E} X$ with probability 1 .

Properties of strictly concave functions

- $f(x)$ is strictly convex $\Longleftrightarrow-f(x)$ is strictly concave
- Differentiable function $f(x)$ is concave $<=>\forall x, y \in \operatorname{dom}(f), x \neq y$:

$$
f(y)<f(x)+\nabla f(x)^{T}(y-x)
$$

- $\forall x \in \operatorname{dom}(f): \nabla^{2} f(x) \succ 0=>f(x)$ is strictly concave.
- Global maximum of strictly concave function on a convex set is unique.
- Jensen's inequality: for random variable X, and strictly concave $f(x)$:

$$
\mathbb{E}[f(X)]<f(\mathbb{E} X)
$$

when $X \neq \mathbb{E} X$ with some probability >0.

- When $X=\mathbb{E} X$ with probability $1 \mathbb{E}[f(X)]=f(\mathbb{E} X)$

Table of Contents

(1) Convex functions

(2) Strictly convex functions
(3) Concave \& strictly concave functions

4 Kullback-Leibler divergence

Kullback-Leibler divergence

- Kullback-Leibler divergence between 2 probability discrete distributions ${ }^{11}$

$$
K L(P \| Q):=\sum_{i} P_{i} \ln \frac{P_{i}}{Q_{i}}
$$

- Kullback-Leibler divergence between 2 probability density functions ${ }^{12}$:

$$
K L(P \| Q):=\int P(x) \ln \frac{P(x)}{Q(x)} d x
$$

[^2]
Kullback-Leibler divergence

- Properties of $K L(P \| Q)$:
- defined only for distributions P, Q such that $P_{i}=0 \Rightarrow Q_{i}=0$
- $K L(P \| Q) \neq K L(Q \| P)$
- symmetrical version:
$K L_{\text {sym }}(P \| Q):=\frac{1}{2}(K L(P \| Q)+K L(Q \| P))$
- $K L(P \| Q) \geq 0 \forall P, Q$

Non-negativity of KL

- $K L(P \| Q) \geq 0 \forall P, Q$

Proof: Consider r.v. U such that $P\left(U_{i}=\frac{Q_{i}}{P_{i}}\right)=P_{i}$

$$
\begin{aligned}
K L(P \| Q) & =\sum_{i} P_{i} \ln \frac{P_{i}}{Q_{i}}=\sum_{i} P_{i}\left(-\ln \frac{Q_{i}}{P_{i}}\right)=\mathbb{E}(-\ln U) \\
& \geq\{\text { convexity of }-\ln (\cdot)+\text { Yensen's inequality }\} \\
& \geq-\ln \mathbb{E} U=-\ln \sum_{i} P_{i} \frac{Q_{i}}{P_{i}}=-\ln \sum_{i} Q_{i}=-\ln 1=0
\end{aligned}
$$

- $K L(P \| Q)=0$ is achieved $\Leftrightarrow P_{i}=Q_{i} \forall i$.

Proof: $K L(P \| Q)=0 \Leftrightarrow U \equiv$ const $=c$ with probability 1 which gives

$$
\begin{equation*}
\frac{P_{i}}{Q_{i}}=c \Leftrightarrow P_{i}=c Q_{i} \quad \forall i \tag{8}
\end{equation*}
$$

Summing (8) by i we obtain $1=c$, so $P_{i}=Q_{i} \forall i$.

Connection of KL and maximum likelihood

Consider discrete r.v. $\xi \in\{1,2, \ldots K\}$. Suppose we estimate probabilities $p(\xi=i)$ with distribution $q_{\theta}(i)$ parametrized by θ. We observe N independent trials of $\xi, \#[\xi=i]=N_{i}$. Maximum likelihood estimate for θ gives:

$$
\begin{aligned}
\widehat{\theta} & =\underset{\theta}{\arg \max } \prod_{n=1}^{N} \prod_{i=1}^{K} q_{\theta}(i)^{\left[\left[\xi_{n}=i\right]\right.}=\underset{\theta}{\arg \max } \prod_{i=1}^{K} q_{\theta}(i)^{N_{i}} \\
& =\underset{\theta}{\arg \max }\left(\prod_{i=1}^{K} q_{\theta}(i)^{N_{i}}\right)^{1 / N}=\underset{\theta}{\arg \max } \prod_{i=1}^{K} q_{\theta}(i)^{N_{i} / N} \\
& =\underset{\theta}{\arg \max } \sum_{i=1}^{K} \frac{N_{i}}{N} \ln q_{\theta}(i)=\left\{p(i):=\frac{N_{i}}{N}, \sum_{i=1}^{K} p(i) \ln p(i)=\operatorname{const}(\theta)\right\} \\
& =\underset{\theta}{\arg \min }\left\{\sum_{i=1}^{K} p(i) \ln p(i)-\sum_{\substack{i=1 \\
37 \geqslant 77}}^{K} p(i) \ln q_{\theta}(i)\right\}=\underset{\theta}{\arg \min } K L(p \| q(\theta))
\end{aligned}
$$

[^0]: ${ }^{2}$ Prove them
 ${ }^{3}$ Prove that global minimums of convex function (defined on convex set) form a convex set.

[^1]: ${ }^{8}$ Prove them
 ${ }^{9}$ Think of an example.
 ${ }^{10}$ Prove that global minimums of convex function (defined on convex set) form a convex set.

[^2]: ${ }^{11}$ Suppose $P(i, j)=P_{1}(i) P_{2}(j)$ and $Q(i, j)=Q_{1}(i) Q_{2}(j)$. Show that $K L(P \| Q)=K L\left(P_{1} \| Q_{1}\right)+K L\left(P_{2} \| Q_{2}\right)$
 ${ }^{12}$ Show that KL diveregence is invariant to reparamtrization $x \rightarrow y(x)$

