Convexity theory - Victor Kitov

Convexity theory

Victor Kitov

Table of Contents

- Convex functions
- 2 Strictly convex functions
- Concave & strictly concave functions
- 4 Kullback-Leibler divergence

Convex sets

Definition 1

Set X is convex if $\forall x, y \in X, \forall \alpha \in (0,1)$:

$$\alpha x + (1 - \alpha)y \in X$$

We will suppose that all functions, considered in this lecture will be defined on convex sets.

Convex functions¹

Definition 2

Function f(x) is **convex** on a set X if $\forall \alpha \in (0,1], x_1 \in X, x_2 \in X$:

$$f(\alpha x_1 + (1-\alpha)x_2) \le \alpha f(x_1) + (1-\alpha)f(x_2)$$

¹Using norm axioms, prove that any norm will be a convex function.

Multivariate and univariate convexity

Theorem 1

Let $f : \mathbb{R}^D \to \mathbb{R}$. f(x) is convex $<=> g(\alpha) = f(x + \alpha v)$ is 1-D convex for $\forall x, v \in \mathbb{R}^D$ and $\forall \alpha \in \mathbb{R}$ such that $x + \alpha v \in dom(f)$.

=> Take $\forall x, v \in \mathbb{R}^D$ and $\forall \alpha_1, \alpha_2, \beta \in \mathbb{R}$. Using convexity of f:

$$g(\beta \alpha_1 + (1 - \beta)\alpha_2) = f(x + v(\beta \alpha_1 + (1 - \beta)\alpha_2))$$

$$= f(\beta(x + \alpha_1 v) + (1 - \beta)(x + \alpha_2 v))$$

$$< \beta f(x + \alpha_1 v) + (1 - \beta)f(x + \alpha_2 v) = \beta g(\alpha_1) + (1 - \beta)g(\alpha_2)$$

so $g(\alpha)$ is convex.

<= Take $\forall x, y \in dom(f)$ and $\forall \alpha \in (0, 1)$. Then using convexity of $g(\alpha) = f(x + \alpha(y - x))$:

5/37

$$\underbrace{g(\alpha)}_{f((1-\alpha)x+\alpha y)} = g(0 \cdot (1-\alpha) + 1 \cdot \alpha) \le (1-\alpha)\underbrace{g(0)}_{f(x)} + \alpha\underbrace{g(1)}_{f(y)}$$

Properties

Theorem 2

Suppose f(x) is twice differentiable on dom(f). Then the following properties are equivalent:

- $f(y) \ge f(x) + \nabla f(x)^T (y x) \quad \forall x, y \in dom(f)$
- **3** $\nabla^2 f(x) \succeq 0$ $\forall x \in dom(f)$

We will prove theorem 2 by proving that $1 \Leftrightarrow 2$ and $2 \Leftrightarrow 3$.

Proof 1=>2

By definition of convexity $\forall \lambda \in (0,1), x,y \in dom(f)$:

$$f(\lambda y + (1 - \lambda)x) \le \lambda f(y) + (1 - \lambda)f(x) = \lambda(f(y) - f(x)) + f(x) \Rightarrow$$
$$f(y) - f(x) \ge \frac{f(x + \lambda(y - x)) - f(x)}{\lambda}$$

In the limit $\lambda \downarrow 0$:

$$f(y) - f(x) \ge \nabla f^T(x)(y - x)$$

Here we used Taylor's expansion

$$f(x + \lambda(y - x)) = f(x) + \nabla f(x)^{T} \lambda(y - x) + o(\lambda ||y - x||)$$

Proof 2 = > 1

Take $\forall x, y \in dom(f)$. Apply property 2 to x, y and $z = \lambda x + (1 - \lambda)y$. We get

$$f(x) \ge f(z) + \nabla f^{T}(z)(x - z) \tag{1}$$

$$f(y) \ge f(z) + \nabla f^{T}(z)(y - z) \tag{2}$$

Multiplying 1 by λ and 2 by $(1-\lambda)$ and adding, we get

$$\lambda f(x) + (1 - \lambda)f(y) \ge f(z) + \nabla f^{T}(z)(\lambda x + (1 - \lambda)y - z)$$

= $f(z) = f(\lambda x + (1 - \lambda)y)$

Proof 2=>3, 1 dimensional case

Take $\forall x, y \in dom(f), y > x$. Following property 2, we have:

$$f(y) \ge f(x) + f'(x)(y - x)$$

$$f(x) \ge f(y) + f'(y)(x - y)$$

So

$$f'(x)(y-x) \le f(y) - f(x) \le f'(y)(y-x)$$

After dividing by $(y-x)^2$ we get

$$\frac{f'(y) - f'(x)}{y - x} \ge 0 \quad \forall x, y, x \ne y$$

Taking $y \to x$ we get

$$f''(x) \ge 0 \quad \forall x \in dom(f)$$

Proof
$$3=>2$$

By mean value version of Taylor theorem we get for some $z \in [x, y]$:

$$f(y) = f(x) + \nabla f(x)(y - x) + \frac{1}{2}(y - x)^T \nabla^2 f(z)(y - x)$$

$$\geq f(x) + \nabla f(x)(y - x)$$

since $\nabla^2 f(z) \geq 0 \quad \forall z$ by condition 3.

2=>3, 1 dimensional case

For any $x, y, \lambda \in [0, 1]$ by Taylor expansion we get:

$$f(x + \lambda(y - x)) = f(x) + f'(x)\lambda(y - x) + \frac{1}{2}f''(x)\lambda^{2}(y - x)^{2} + o(\lambda^{3})$$

$$\geq f(x) + f'(x)(y - x)$$

In the limit $\lambda \to 0$ we get $f''(x) \ge 0$.

Proof 2=>3 for *D*-dimensional case

From theorem 1 convexity of f(x) is equivalent to convexity of $g(\alpha) = f(x + \alpha v) \ \forall x, v \in \mathbb{R}^D$ and $\alpha \in \mathbb{R}$ such that $z = x + \alpha v \in dom(f)$. From property 3 this is equivalent to

$$g''(\alpha) = v^T \nabla^2 f(x + \alpha v) v \ge 0$$

Because z and v are arbitrary, last condition is equivalent to $\nabla^2 f(x) \geq 0$.

Optimality for convex functions

Theorem 3

Suppose convex function f(x) satisfies $\nabla f(x^*) = 0$ for some x^* . Then x^* is the global minimum of f(x).

Proof. Since f(x) is convex, then from condition 2 of theorem $2\forall x, y \in dom(f)$:

$$f(x) \ge f(y) + \nabla f^{\mathsf{T}}(y)(x-y)$$

Taking $y = x^*$ we have

$$f(x) \ge f(x^*) + \nabla f^T(x^*)(x - x^*) = f(x^*)$$

Since x was arbitrary, x^* is a global minimum.

Optimality for convex functions³

Comments on theorem (3):

- $\nabla f(x^*) = 0$ is necessary condition for local minimum. Together with convexity it becomes sufficient condition.
- $\nabla f(x^*) = 0$ without convexity is not sufficient for any local optimality.

Properties of minimums of convex function defined on convex set²:

- Set of global minimums is convex
- Local minimum is global minimum

²Prove them

³Prove that global minimums of convex function (defined on convex set) form a convex set.

Jensen's inequality

Theorem 4

For any convex function f(x) and random variable X it holds that

$$\mathbb{E}[f(X)] \ge f(\mathbb{E}X)$$

Proof. For simplicity consider differentiable f(x). From property 2 of theorem $2 \forall x, y \in \text{dom}(f)$:

$$f(x) \ge f(y) + \nabla f^{T}(y)(y - x)$$

By taking x = X and $y = \mathbb{E}X$, obtain

$$f(X) \ge f(\mathbb{E}X) + \nabla f^{T}(\mathbb{E}X)(\mathbb{E}X - X)$$

After taking expectation of both sides, we get

$$\mathbb{E}f(X) \geq f(\mathbb{E}X) + \nabla f^{\mathsf{T}}(\mathbb{E}X)(\mathbb{E}X - \mathbb{E}X) = f(\mathbb{E}X)$$

⁴for general proof consider sub-derivatives, which always exist.

Alternative proof of Jensen's inequality

• Convexity => by induction for $\forall K=2,3,...$ and $\forall p_k \geq 0: \sum_{k=1}^K p_k = 1$

$$\sum_{k=1}^{K} f(p_k x_k) \le \sum_{k=1}^{K} p_k f(x_k)$$
 (3)

• For r.v. X_K with $P(X_K = x_i) = p_i$ (3) becomes

$$f(\mathbb{E}X_K) \le \mathbb{E}f(X_K) \tag{4}$$

• For arbitrary X we may consider $X_K \uparrow X$. In the limit $K \to \infty$ (4) becomes⁵

$$f(\mathbb{E}X) \leq \mathbb{E}f(X)$$

 $^{^5}$ Strictly speaking you need to prove continuity of f and $\mathbb E$ here.

Illustration of Jensen's inequality

Generating convex functions⁶

- Any norm is convex
- If $f(\cdot)$ and $g(\cdot)$ are convex, then
 - f(x) + g(x) is convex
 - F(x) = f(g(x)) is convex for non-decreasing $f(\cdot)$
 - $F(x) = \max\{f(x), g(x)\}\$ is convex
- These properties can be extrapolated on any number of functions.
- If f(x) is convex, $x \in \mathbb{R}^D$, then for all $\alpha > 0$, $Q \in \mathbb{R}^{D \times D}$, $Q \succcurlyeq 0$, $B \in \mathbb{R}^{K \times D}$, $c \in \mathbb{R}^K$, K = 1, 2, ... the following functions are also convex:
 - $\alpha f(x)$ is convex
 - \bullet $B^Tx + c$
 - $x^T Qx + Bx + c$,
 - F(x) = f(Bx + c), for $x \in \mathbb{R}^D$,

⁶Prove these properties.

Exercises

Are the following functions convex?

•
$$f(x) = |x|$$

•
$$f(x) = ||x||_1 + ||x||_2^2$$

•
$$f(x) = (3x_1 - 5x_2)^2 + (4x_1 - 2x_2)^2$$

•
$$x \ln x$$
, $-\ln x$, $-x^p$ for $x > 0$, $p \in (0, 1)$.

•
$$x^p, p > 1$$
.

•
$$\ln(1+e^{-x})$$
, $[1-x]_+$

•
$$F(w) = \sum_{n=1}^{N} [1 - w^T x_n]_+ + \lambda \sum_{d=1}^{D} |w_d|$$

•
$$F(w) = \sum_{n=1}^{N} \ln(1 + e^{-w^T x_n}) + \lambda \sum_{d=1}^{D} w_d^2$$

Exercises

Suppose f(x) and g(x) are convex. Can the following functions be non-convex?

•
$$f(x) - g(x)$$
, $f(x)g(x)$, $f(x)/g(x)$, $|f(x)|$, $f^2(x)$, $\min\{f(x), g(x)\}$

Suppose
$$f(x)$$
 is convex, $f(x) \ge 0 \ \forall x \in \text{dom}(f), k \ge 1$. Can $g(x) = f^k(x)$ be non-convex?

Table of Contents

- Convex functions
- Strictly convex functions
- Concave & strictly concave functions
- 4 Kullback-Leibler divergence

Strictly convex functions⁷

Definition 3

Function f(x) is **strictly convex** on a set X if

$$\forall \alpha \in (0,1], x_1, x_2 \in X, x_1 \neq x_2$$
:

$$f(\alpha x_1 + (1 - \alpha)x_2) < \alpha f(x_1) + (1 - \alpha)f(x_2)$$

⁷Prove that global minimum of strictly convex function defined on convex set is unique.

Criterion for strict convexity

Theorem 5

Function f(x) is **strictly convex** $\leq > \forall x, y \in dom(f), x \neq y$:

$$f(y) > f(x) + \nabla f(x)^{T} (y - x)$$
(5)

<= The same as proof 2=>1 for theorem 2 with replacement $\geq \rightarrow >$.

Criterion for strict convexity

=> Using property 2 of theorem 2 we have

$$\forall x, z: \quad f(z) \ge f(x) + \nabla f(x)^{T} (z - x) \tag{6}$$

Suppose (5) does not hold, so $\exists y : f(y) = f(x) + \nabla f(x)^T (y - x)$. It follows that

$$\nabla f(x)^{T}(y-x) = f(y) - f(x) \tag{7}$$

Consider $u = \alpha x + (1 - \alpha)y$ for $\forall \alpha \in (0, 1)$. Using (6) and (7):

$$f(u) = f(\alpha x + (1 - \alpha)y) \ge f(x) + \nabla f(x)^{T} (u - x)$$

$$= f(x) + \nabla f(x)^{T} (\alpha x + (1 - \alpha)y - x)$$

$$= f(x) + \nabla f(x)^{T} (1 - \alpha)(y - x)$$

$$= f(x) + (1 - \alpha)(f(y) - f(x)) = (1 - \alpha)f(y) + \alpha f(x)$$

• Obtained inequality $f(\alpha x + (1 - \alpha)y) \ge (1 - \alpha)f(y) + \alpha f(x)$ contradicts strict convexity. So (6) should hold as strict inequality (5).

Jensen's inequality

Theorem 6

For strictly convex function f(x) equality in Jensen's inequality

$$\mathbb{E}[f(X)] \ge f(\mathbb{E}X)$$

holds $<=> X = \mathbb{E}X$ with probability 1.

Proof. 1) Consider $X \neq \mathbb{E}X$ with probability 1:

From theorem (5) $\forall x \neq y \in dom(f)$:

$$f(x) > f(y) + \nabla f^{T}(y)(y - x)$$

By taking x = X and $y = \mathbb{E}X$, obtain

$$f(X) > f(\mathbb{E}X) + \nabla f^{T}(\mathbb{E}X)(\mathbb{E}X - X)$$

After taking expectation of both sides, we get

$$\mathbb{E}f(X) > f(\mathbb{E}X) + \nabla f^{T}(\mathbb{E}X)(\mathbb{E}X - \mathbb{E}X) = f(\mathbb{E}X)$$

Jensen's inequality

2) Consider case $X=\mathbb{E}X$ with probability 1. In this case with probability 1

$$f(X) = f(\mathbb{E}X)$$

which after taking expectation becomes

$$\mathbb{E}f(X) = \mathbb{E}f(\mathbb{E}X) = f(\mathbb{E}X)$$

Properties of strictly convex functions¹⁰

Properties of minimums of strictly convex function defined on convex set⁸:

- Global minimum is unique.
- If $\nabla^2 f(x) \succ 0 \ \forall x \in \mathsf{dom}(f)$, then f(x) is strictly convex
 - proof: use mean value version of Taylor theorem and strict convexity criterion (5).
 - strict convexity does not imply $\nabla^2 f(x) \succ 0 \, \forall x \in \text{dom}(f)^9$

⁸Prove them

⁹Think of an example.

¹⁰Prove that global minimums of convex function (defined on convex set) form a convex set.

Table of Contents

- Convex functions
- Strictly convex functions
- 3 Concave & strictly concave functions
- 4 Kullback-Leibler divergence

Concave functions

Definition 4

Function f(x) is **concave** on a set X if

 $\forall \alpha \in (0,1], x_1 \in X, x_2 \in X$:

$$f(\alpha x_1 + (1 - \alpha)x_2) \ge \alpha f(x_1) + (1 - \alpha)f(x_2)$$

Definition 5

Function f(x) is strictly concave on a set X if

 $\forall \alpha \in (0,1], x_1, x_2 \in X, x_1 \neq x_2$:

$$f(\alpha x_1 + (1 - \alpha)x_2) > \alpha f(x_1) + (1 - \alpha)f(x_2)$$

Concave function example

Properties of concave functions

- f(x) is convex $\iff -f(x)$ is concave
- Differentiable function f(x) is **concave** $<=>\forall x,y\in dom(f)$:

$$f(y) \le f(x) + \nabla f(x)^T (y - x)$$

- Twice differentiable function f(x) is **concave** $<=>\forall x\in dom(f): \nabla^2 f(x) \geq 0$
- Global maximums of concave function on convex set form a convex set.
- Local maximum of a concave function is global
- $\nabla f(x^*) = 0 <=> x^*$ is global maximum.
- Jensen's inequality: for random variable X and concave f(x):

$$\mathbb{E}[f(X)] \leq f(\mathbb{E}X)$$

- equality is achieved <=> f is linear on $\{x: P(X=x)>0\}$.
 - this holds when $X = \mathbb{E}X$ with probability 1.

Properties of strictly concave functions

- f(x) is strictly convex $\iff -f(x)$ is strictly concave
- Differentiable function f(x) is **concave** $<=>\forall x,y\in dom(f), x\neq y$:

$$f(y) < f(x) + \nabla f(x)^{T} (y - x)$$

- $\forall x \in \text{dom}(f): \nabla^2 f(x) \succ 0 => f(x)$ is strictly concave.
- Global maximum of strictly concave function on a convex set is unique.
- Jensen's inequality: for random variable X, and strictly concave f(x):

$$\mathbb{E}[f(X)] < f(\mathbb{E}X)$$

when $X \neq \mathbb{E}X$ with some probability>0.

• When $X = \mathbb{E}X$ with probability $1 \mathbb{E}[f(X)] = f(\mathbb{E}X)$

Table of Contents

- Convex functions
- Strictly convex functions
- Concave & strictly concave functions
- Mullback-Leibler divergence

Kullback-Leibler divergence

 Kullback-Leibler divergence between 2 probability discrete distributions¹¹

$$KL(P||Q) := \sum_{i} P_{i} \ln \frac{P_{i}}{Q_{i}}$$

• Kullback-Leibler divergence between 2 probability density functions¹²:

$$KL(P||Q) := \int P(x) \ln \frac{P(x)}{Q(x)} dx$$

Show that KL divergence is invariant to reparamtrization $x \to y(x)$

¹¹Suppose $P(i,j) = P_1(i)P_2(j)$ and $Q(i,j) = Q_1(i)Q_2(j)$. Show that $KL(P||Q) = KL(P_1||Q_1) + KL(P_2||Q_2)$

Kullback-Leibler divergence

- Properties of KL(P||Q):
 - defined only for distributions P, Q such that $P_i = 0 \Rightarrow Q_i = 0$
 - $KL(P||Q) \neq KL(Q||P)$
 - symmetrical version: $KL_{sym}(P||Q) := \frac{1}{2} (KL(P||Q) + KL(Q||P))$
 - $KL(P||Q) \ge 0 \ \forall P, Q$

Non-negativity of KL

• $KL(P||Q) \ge 0 \ \forall P, Q$ **Proof:** Consider r.v. U such that $P(U_i = \frac{Q_i}{P_i}) = P_i$

$$\begin{aligned} \mathit{KL}(P||Q) &= \sum_{i} P_{i} \ln \frac{P_{i}}{Q_{i}} = \sum_{i} P_{i} \left(-\ln \frac{Q_{i}}{P_{i}} \right) = \mathbb{E} \left(-\ln U \right) \\ &\geq \left\{ \mathsf{convexity of} - \ln(\cdot) + \mathsf{Yensen's inequality} \right\} \\ &\geq -\ln \mathbb{E} U = -\ln \sum_{i} P_{i} \frac{Q_{i}}{P_{i}} = -\ln \sum_{i} Q_{i} = -\ln 1 = 0 \end{aligned}$$

• $\mathit{KL}(P||Q) = 0$ is achieved $\Leftrightarrow P_i = Q_i \, \forall i$. **Proof**: $\mathit{KL}(P||Q) = 0 \Leftrightarrow U \equiv \mathit{const} = c$ with probability 1 which gives

$$\frac{P_i}{Q_i} = c \Leftrightarrow P_i = cQ_i \quad \forall i \tag{8}$$

Summing (8) by i we obtain 1 = c, so $P_i = Q_i \forall i$.

Connection of KL and maximum likelihood

Consider discrete r.v. $\xi \in \{1,2,...K\}$. Suppose we estimate probabilities $p(\xi=i)$ with distribution $q_{\theta}(i)$ parametrized by θ . We observe N independent trials of ξ , $\#[\xi=i]=N_i$. Maximum likelihood estimate for θ gives:

$$\begin{split} \widehat{\theta} &= \arg\max_{\theta} \prod_{n=1}^{N} \prod_{i=1}^{K} q_{\theta}(i)^{\mathbb{I}[\xi_{n}=i]} = \arg\max_{\theta} \prod_{i=1}^{K} q_{\theta}(i)^{N_{i}} \\ &= \arg\max_{\theta} \left(\prod_{i=1}^{K} q_{\theta}(i)^{N_{i}} \right)^{1/N} = \arg\max_{\theta} \prod_{i=1}^{K} q_{\theta}(i)^{N_{i}/N} \\ &= \arg\max_{\theta} \sum_{i=1}^{K} \frac{N_{i}}{N} \ln q_{\theta}(i) = \{p(i) := \frac{N_{i}}{N}, \sum_{i=1}^{K} p(i) \ln p(i) = const(\theta)\} \\ &= \arg\min_{\theta} \left\{ \sum_{i=1}^{K} p(i) \ln p(i) - \sum_{\frac{i}{37/37}}^{K} p(i) \ln q_{\theta}(i) \right\} = \arg\min_{\theta} KL(p||q(\theta)) \end{split}$$