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Abstract

In this paper we address the problem of finding the most probable state of discrete
Markov random field (MRF) with pairwise terms of a special type which we refer
to as “selfish”. Selfish potentials allow us to use a novel typeof MRF decompo-
sition to a number of solvable subproblems with the same set of nodes and edges
but binary variables. We call the proposed framework Graph Preserving Label
Decomposition (GPLD) and prove that the GPLD lower bound is equal to the so-
lution of the standard LP-relaxation of the initial problem. The special structure of
GPLD makes it possible to take into account the desired global properties of the
solution, e.g. constraints on various linear combinationsof class indicator vari-
ables. We provide the comparison of our method with state-of-the-art algorithms
both in terms of accuracy and speed.

1 Introduction

The problem of efficient Bayesian inference arises in many applied domains, e.g.in machine learn-
ing, computer vision, decision-making, etc. One of the mostintriguing problems is the development
of approximate inference algorithms for problems that are NP-hard in general. An important particu-
lar case is the MAP-inference problem in cyclic discrete Markov random fields (MRF) with energies
that can be represented via sum of unary and pairwise terms.

LetG = (V , E) be an undirected graph withV andE being the sets of nodes and edges, respectively.
With each node we associate a class labeltj ∈ {1, . . . , P}. The MAP-inference problem can be
formulated as an energy minimization problem

∑

(j∈V)

θj(tj) +
∑

(i,j)∈E

θij(ti, tj)→ min .
t1,...,t|V|∈{1,...,P}

(1)

where unary potentialsθj(tj) and pairwise potentialsθij(ti, tj) are some known functions of dis-
crete argument.

Although NP-hard in general problem (1) can be solved exactly in polynomial time in several spe-
cial cases. One example is dynamic programming approach [11] for inference in tree-structured
graphs. Another example is MRFs with outer-planar graphs [13], or more generally MRFs with low
treewidth [8]. Min-cut/max-flow algorithms can efficientlysolve the MAP-inference problem on
arbitrary graphs when all the variables are binary and the pairwise potentials meet submodularity
constraint [4, 6].

θij(0, 0) + θij(1, 1) ≤ θij(0, 1) + θij(1, 0). (2)

* The authors assert equal contribution and thus joint first authorship.
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When the submodularity property doesn’t hold one can use quadratic pseudo-boolean optimization
algorithm (QPBO) to get a lower bound on the minimum of energy(1). This lower bound is known
to equal the solution of the LP-relaxation of the binary problem [12].

Advanced approximate methods based on MRF decomposition have recently appeared [14]. The
most popular method, tree-reweighted message passing (TRW) [16, 5, 7], splits the MRF with cy-
cles into a number of acyclic subgraphs (trees) and, for eachtree, inference is made independently
with the subsequent harmonization of the optimal solutions. Although being able to solve discrete
subproblems exactly tree decomposition methods are known to converge to the solution of the LP-
relaxation of the initial problem at their best1. The other decomposition methods [15, 1] exploit
similar ideas. Unlike more efficient approximate energy minimization algorithms, e.g. [3], decom-
position framework makes it possible to take into account some global properties of the solution, in
particular to establish constraints on the areas of classes[17, 9].

In this paper we address the MAP-inference problem with pairwise potentials of a special kind
which we call “selfish” since they care ( either attract or repulse) the neighbors of the same class
returning zero otherwise. Selfish potentials allow us to perform the decomposition to a number of
binary subproblems that correspond to different classes and are based on the set of nodesV and the
set of edgesE . These subproblems are NP-hard in general but we can use QPBOalgorithm to get
the solution of their LP-relaxation. We prove that the harmonization of subproblems’ solutions via
dual decomposition provides the LP-relaxation of the initial problem. We show that our algorithm
generally converges faster than TRW algorithm which is based on the dual decomposition (DD-
TRW) and provides better lower bound that TRW-S in the presence of repulsive pairwise potentials.
We refer to the new type of decomposition as graph preservinglabel decomposition (GPLD). GPLD
also allows us to take into account the preferences on any type of global linear statistics of the class
indicator variables in a straightforward manner.

The rest of the paper is organized as follows. In the next section we present GPLD framework
and prove the equivalence of GPLD and LP-relaxation lower bounds. The way of taking into ac-
count some global conditions on the desired solution is discussed in section 3. We present some
experimental results in section 4.

2 Graph Preserving Label Decomposition

2.1 Decomposition of standard MRFs with selfish pairwise potentials

Consider the indicator parametrization of (1) obtained by establishing auxiliary binary variables
Y = {yjp} ∈ {0, 1}|V|×P :

yjp =

{

1, tj = p,

0, otherwise.

Denoteθj(p) = θjp andθij(p, q) = θij,pq = θji,qp. Then problem (1) takes the form of

E(Y ) =
∑

j∈V

P
∑

p=1

θjpyjp +
∑

(i,j)∈E

P
∑

p,q=1

θij,pqyipyjq → min
Y

, (3)

s.t.yjp ∈ {0, 1},
P
∑

p=1

yjp = 1. (4)

We denote set
{

Y | yjp ∈ {0, 1}
}

byL and set
{

Y |
∑P

p=1 yjp = 1, ∀j ∈ V
}

by G.

In what follows we consider selfish pairwise potentials, i.e. such ones that

θij,pq = Cij,pδpq, (5)

1The popular TRW-S algorithm does not have this property and guarantees the convergence only to a
coordinate-wise maximum of the lower bound
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whereδpq = 1 iff p = q. Then we may rewrite energy (3) as follows

min
Y ∈L∩G

E(Y ) = min
Y ∈L∩G

P
∑

p=1

(

∑

j∈V
θjpyjp +

∑

(i,j)∈E

Cij,pyipyjp

)

≥

max
Λ

min
Y ∈L

P
∑

p=1

(

∑

j∈V
θjpyjp +

∑

(i,j)∈E

Cij,pyipyjp +
∑

j∈V
λj

(

P
∑

p=1

yjp − 1

))

=

max
Λ







P
∑

p=1

min
Y ∈L

(

∑

j∈V
(θjp + λj)yjp +

∑

(i,j)∈E

Cij,pyipyjp

)

−
∑

j∈V
λj







. (6)

Hence we obtained a decomposition of the initial problem toP subproblems each corresponding to
a single class.

2.2 Reduction to solvable subproblems

Note that if all parametersCij,p were non-positive the subproblems of (6) could be solved easily
using min-cut algorithms since their energies would be submodular. This forms the basis of recently
proposed submodular decomposition method (SMD) [10]. However in general case these subprob-
lems are still NP-hard. Consider a single subproblem which corresponds to labelp. We may rewrite
it as a linear function by adding new variablesZ

min
Y ∈L

(

∑

j∈V
(θjp + λj)yjp +

∑

(i,j)∈E

Cij,pyipyjp

)

= min
Y,Z

(

∑

j∈V
(θjp + λj)yjp +

∑

(i,j)∈E

Cij,pzij,pp

)

(7)

s.t. yjp, zij,pp ∈ {0, 1}, zij,pp ≤ yip, yjp, zij,pp ≥ yip + yjp − 1. (8)

Removal of integrality constraints with non-negativity conditions onY , Z yields linear program-
ming problem.

∑

j∈V
(θjp + λj)yjp +

∑

(i,j)∈E

Cij,pzij,pp → min
Y,Z

(9)

s.t. yjp, zij,pp ∈ [0, 1], zij,pp ≥ 0, zij,pp ≤ yip, yjp, zij,pp ≥ yip + yjp − 1. (10)

Lemma 1 Problem (9) with the constraints (10) is equivalent to problem (9) with the following
constraints

yip + yip = 1, yip, yip, zij,pp, zij,pp, zij,pp, zij,pp ≥ 0, (11)

zij,pp + zij,pp = yip, zij,pp + zij,pp = yip, zij,pp + zij,pp = yjp, zij,pp + zij,pp = yjp (12)

The proof requires consideration of the sign ofCij,p. In the case of negativeCij,p the constraints
(11), (12) implyzij,pp ≤ min(yip, yjp). In the case of positiveCij,p the constraints (11), (12) imply
zij,pp ≥ yip + yjp − 1. On the other hand after finding the solution of (9), (10) we may always set
zij,pp = yjp − zijpp, zij,pp = yip − zij,pp, zij,pp = zij,pp + 1 − yip − yjp. It is straightforward to
show that all constraints (11), (12) are satisfied.

Note that minimum of (9) w.r.t. (11), (12) can be found efficiently using quadratic pseudo-Boolean
optimization (QPBO). Formally QPBO computes only the valueof minimum and assigns either zero,
one, or “don’t know” toyip. However it can be shown [2] that “don’t know” answers correspond to
yip = 0.5 (so-called half-intergrality property) in the solution of(9) and the missing values ofzij,pp
can be easily revealed using lemma 1 and (10):

zij,pp =

{

min(yip, yjp), Cij,p ≤ 0,

max(0, yip + yjp − 1), otherwise.
(13)
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Finally we may establish a lower bound on lower bound (6)

max
Λ







P
∑

p=1

min
Y ∈L

(

∑

j∈V
(θjp + λj)yjp +

∑

(i,j)∈E

Cij,pyipyjp

)

−
∑

j∈V
λj







≥

max
Λ







P
∑

p=1

min
Y,Z∈(10)

(

∑

j∈V
(θjp + λj)yjp +

∑

(i,j)∈E

Cij,pzij,pp

)

−
∑

j∈V
λj







=

max
Λ







min
Y,Z∈(10)

E(Y, Z,Λ)−
∑

j∈V
λj







= max
Λ

Φ(Λ) (14)

where each subproblem is solvable. Note that with respect toΛ lower bound (14) is piecewise linear
concave function and hence can be maximized e.g. by subgradient ascent.

2.3 Convergence to LP relaxation bound

GPLD allows to get a lower bound on the solution of discrete problem (3), (4). In SMD it was
possible to optimize directly (6) and it was proven that its maximum equals to the solution of the
LP-relaxation of the initial problem

∑

j∈V

K
∑

p=1

θjpyjp +
∑

(i,j)∈E

K
∑

p,q=1

θij,pqzij,pq → min
Y,Z

(15)

s.t. yjp, zij,pq ≥ 0,
K
∑

p=1

yjp = 1,
K
∑

q=1

zij,pq = yip,

K
∑

p=1

zij,pq = yjq. (16)

In GPLD one can optimize weaker lower bound (14). Nevertheless the following statement holds.

Theorem 1 The maximum of GPLD lower bound (14) equals to the minimum of LP-relaxation of
energy (15), (16).

Due to the lack of space we provide just a short sketch of the proof. ConsiderΛ0 = argmaxΦ(Λ).
Among the argmins ofE(Y, Z,Λ0) there exists(Y 0, Z0) such thatY 0 ∈ G. It suffices to show that
we may always findZ1 ≥ 0 such that allz1ij,pp satisfy (13),

∑K

q=1 z
1
ij,pq = y0ip,

∑K

p=1 z
1
ij,pq = y0jq,

andE(Y 0, Z0,Λ0) = E(Y 0, Z1,Λ0). In the proof we provide a constructive algorithm that builds
suchZ1.

3 Global constraints

The graph preserving label decomposition has several advantages over state-of-the art (wide)tree-
based decompositions. Since we deal with label indicator variablesyjp we may establish any kinds
of constraints on linear functions of these variables

∑

j∈V

P
∑

p=1

wm
jpyjp = cm, m = 1, . . . ,M (17)

∑

j∈V

P
∑

p=1

vkjpyjp ≤ dk, k = 1, . . . ,K. (18)

Thenpth subproblem takes the form of

min
Y,Z∈(10)

(

∑

j∈V
(θjp + λj +

M
∑

m=1

µmwm
jp +

K
∑

k=1

κkv
k
jp)yjp +

∑

(i,j)∈E

Cij,pzij,pp

)

, (19)

whereΛ, M , andK ≥ 0 are Lagrange multipliers with respect to which one performsfurther
projected subgradient ascend. Note that the subproblem is still solvable by QPBO.
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Figure 1: (a) shows the estimate of the duality gap against the rate of repulsive pairwise potentials.
Solid line shows the mean value, dashed lines show one standard deviation from the mean value. (b)
demonstrates the average lower bound on energy 1 obtained byGPLD (red), TRW-S (blue), DD-
TRW (green) vs. number of iterations. The vertical axis indicates the gap between the current lower
bound and the solution of the LP-relaxation. The value of thegap between the integer solution
obtained by TRW-S and the exact solution of the LP-relaxation obtained using an interior point
solver is set to 100. The horizontal axis shows the current iteration number. (c) shows the percentage
of generated problems against the accuracy (the differencebetween the lower bound and the LP-
relaxation) achieved within 5000 iterations. The horizontal axis is in the logarithmic scale and its
units correspond to the units of the vertical axis of plot (b).

Theorem 2 Maximin

max
Λ,M,K≥0



 min
Y,Z∈(10)

E(Y, Z,Λ,M,K)−
∑

j∈V

(

λj +
M
∑

m=1

cmµm +
K
∑

k=1

dkκk

)





equals to the solution of LP problem (15), (16)with additional constraints (17), (18).

The proof is similar to the proof of theorem 1. The only difference is thatY 0 also satisfies (17)
and (18).

4 Experiments and discussion

Evaluation of the primal-dual gap w.r.t. the rate of non-submodular terms. The “complexity”
of problem (1) greatly depends on the relations between energy parameters. It has been shown
(e.g. [5]) that in the presence of both attractive and repulsive pairwise potentials the duality gap
(and consequently the “complexity” of the problem) grows with the increase of relative strength
of pairwise potentials. Here we explore another important factor – the fraction of repulsive Potts
potentials, i.e. the ones whereCij,p > 0. Figure 1a shows the estimate of the duality gap against the
rate of repulsive potentials to all pairwise potentials. Toensure the reproductivity of this result we
estimate the duality gap using TRWS-S method2. For each rate of repulsive potentials we generate
20 toy problems:50 × 50 grid, 10 labels, unary potentials are generated fromN (0, 1), pairwise
potentials are generated as absolute values ofN (0, 2) with subsequent sign switch of the given
fraction of randomly chosen potentials. Figure 1a shows that the largest duality gap appears when
20-30% of pairwise potentials are repulsive.

Comparison with TRW-S and DD-TRW. In this section we compare the performance of TRW-
S, DD-TRW, and GPLD on a set of 100 syntectic problems generated in the same setup described
in the previous section. The rate of repulsive potentials iskept at the level of 30%. For TRW-S
method we use the author’s original code. In DD-TRW we decompose the grid into vertical and
horizontal chains. As for subgradient optimization both inDD-TRW and GPLD we’ve selected an
adaptive scheme that was recommended in [7, eq. 41] combinedwith further switch to non-adaptive
diminishing step size rule:αt = a√

t
that gives theoretical guarantees of the convergence to the

optimum. Here positive constanta is a parameter of the algorithm andt is the current iteration
number.

Plot 1b shows the averaged performance of GPLD, TRW-S, and DD-TRW against the number of
iterations. Plot 1c shows the fraction of problems where thegiven method achieved the given level
of accuracy within 5000 iterations. We observe that TRW-S shows the best performance in the
beginning but gets stuck in a coordinate-wise maximum, i.e.is generally unable to converge to

2We used the original authors code published on http://pub.ist.ac.at/ vnk/papers/TRW-S.html
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(a) (b) (c) (d)
Figure 2: Results for the image segmentation problem. (a) – initial image with seeds; (b) – the result
of TRW-S; (c) – result of GPLD; (d) – the result of GPLD with global constraints on label areas.

the LP lower bound. GPLD shows the ability to achieve higher accuracy in reasonable time. Poor
performance of DD-TRW can be explained by the fact that the dimensionality of the dual space is
P = 10 times larger than the dimensionality of GPLD’s dual space. Another possible explanation
is that our way of decomposing the grid into trees may not optimal and implies slow convergence.

Image segmentation with non-submodular pairwise terms andglobal constraints.To show the
effect of global linear constraints on indicator variableswe construct an energy to segment artificial
image 2a with user provided seeds. Identical colors of all 3 objects and background make color-
based unary potentials useless and therefore unaries contain only seed information and small bias
to background class. Pairwise potentials are set to attractive Potts potentialsCij,p = −C < 0
at the edges with low contrast and to repulsive Potts potentialsCij,p = C at the edges with high
contrast. The contrast threshold is set to 25 (black color has intensity 0 and white color has intensity
255). In this setting the energy is “complex”, because the unary potentials are weak and the pairwise
potentials are both repulsive and attractive. Figures 2b, cshow that both TRW-S and GPLD cope
with the problem poorly i.e. provide very fragmented segemtnation. Figure 2d shows the result of
GPLD with global constraints on objects’ areas which were set to their right values.

Conclusion. Our experiments show that GPLD outperforms DD-TRW in time and TRW-S in
accuracy in the “complex” cases when there are both repulsive and attractive pairwise terms. A
possible direction for the future work would be to apply probing algorithms [12] which yield tighter
relexations for binary subproblems (7).
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