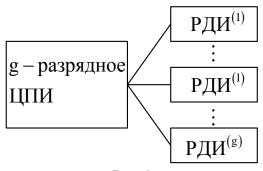

ФГБОУ ВО «Вятский Государственный университет», г. Киров

НЕЛИНЕЙНАЯ МНОГОМЕРНАЯ ФИЛЬТРАЦИЯ МНОГОКОМПОНЕНТНЫХ ИЗОБРАЖЕНИЙ


Медведева Елена Викторовна, д.т.н., профессор Трубин Игорь Сергеевич, д.т.н., профессор Устюжанина Е.А., студент Лалетин А.В., студент

1. Коррелирующие области цветовых компонент

2. Математическая модель RGB изображения

Пусть цифровые полутоновые изображения (ЦПИ) представлены g-разрядными двоичными числами.

Это позволяет разбить ЦПИ цветовых компонент на g разрядных двоичных изображений (РДИ), каждое из которых является суперпозицией трех простых цепей Маркова с двумя равновероятными значениями $M_1^{(l)}$ и $M_2^{(l)}$

Рис.1

и матрицами вероятностей переходов по горизонтали, вертикали и между цветовыми компонентами ($l=\overline{1,g}$):

$${}^{1}\Pi^{(1)} = \begin{vmatrix} {}^{1}\pi_{11}^{(l)} & {}^{1}\pi_{12}^{(l)} \\ {}^{1}\pi_{21}^{(l)} & {}^{1}\pi_{22}^{(l)} \end{vmatrix}, {}^{2}\Pi^{(1)} = \begin{vmatrix} {}^{2}\pi_{11}^{(l)} & {}^{2}\pi_{12}^{(l)} \\ {}^{2}\pi_{21}^{(l)} & {}^{2}\pi_{22}^{(l)} \end{vmatrix}, {}^{4}\Pi^{(1)} = \begin{vmatrix} {}^{4}\pi_{11}^{(l)} & {}^{4}\pi_{12}^{(l)} \\ {}^{4}\pi_{21}^{(l)} & {}^{4}\pi_{22}^{(l)} \end{vmatrix}$$
(1)

3. Разрядные двоичные изображения цветовых компонент *l*-го разряда ЦПИ

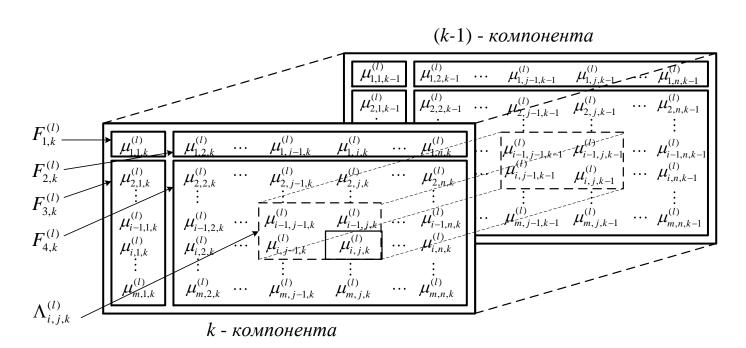
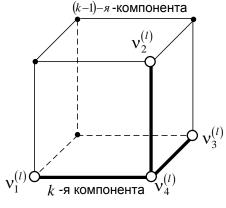



Рис. 1.

4. Трехмерная математическая модель РДИ цветовых компонент

Количество информации в $V_4^{(l)}$:

$$I\left(v_{4}^{(l)} \middle| v_{1}^{(l)}, v_{2}^{(l)}, v_{3}^{(l)}\right) = I\left(v_{4}^{(l)}\right) - I\left(v_{1}^{(l)}, v_{2}^{(l)}, v_{3}^{(l)}, v_{4}^{(l)}\right) = -\log \frac{w\left(v_{4}^{(l)} \middle| v_{1}^{(l)}\right) w\left(v_{4}^{(l)} \middle| v_{2}^{(l)}\right) w\left(v_{4}^{(l)} \middle| v_{1}^{(l)}, v_{2}^{(l)}\right) w\left(v_{4}^{(l)} \middle| v_{1}^{(l)}, v_{2}^{(l)}\right) w\left(v_{4}^{(l)} \middle| v_{1}^{(l)}, v_{2}^{(l)}\right) w\left(v_{4}^{(l)} \middle| v_{1}^{(l)}, v_{3}^{(l)}\right) w\left(v_{4}^{(l)} \middle| v_{1}^{(l)}, v_{3}^{(l)}\right) w\left(v_{4}^{(l)} \middle| v_{1}^{(l)}, v_{3}^{(l)}\right) w\left(v_{4}^{(l)} \middle| v_{1}^{(l)}, v_{3}^{(l)}\right) w\left(v_{4}^{(l)} \middle| v_{1}^{(l)}, v_{2}^{(l)}\right) w\left(v_{4}^{(l)} \middle| v_{1}^{(l)}, v_{2}^{$$

$$\Pi = \begin{pmatrix} \pi_{iiii}^{(l)} & \pi_{iiij}^{(l)} \\ \pi_{iiji}^{(l)} & \pi_{iiij}^{(l)} \\ \vdots & \vdots \\ \pi_{jjji}^{(l)} & \pi_{jjjj}^{(l)} \end{pmatrix} = \begin{pmatrix} \alpha_1^{(l)} & \alpha_1^{\prime(l)} \\ \alpha_2^{(l)} & \alpha_2^{\prime(l)} \\ \vdots & \vdots \\ \alpha_8^{(l)} & \alpha_8^{\prime(l)} \end{pmatrix}, i, j = \overline{1, 2}; i \neq j, (2)$$

элементы матрицы симметричны и удовлетворяют условию нормировки $\alpha_q + {\alpha'_q}^{(l)} = 1$.

Выражения для вычисления элементов первой строки матрицы:

$$\alpha_{1}^{(l)} = \pi_{iiii}^{(l)} = \frac{{}^{1}\pi_{ii}^{(l)} \cdot {}^{2}\pi_{ii}^{(l)} \cdot {}^{4}\pi_{ii}^{(l)} \cdot {}^{7}\pi_{ii}^{(l)}}{{}^{3}\pi_{ii}^{(l)} \cdot {}^{5}\pi_{ii}^{(l)} \cdot {}^{6}\pi_{ii}^{(l)}}, \quad \alpha_{1}^{\prime(l)} = \pi_{iiij}^{(l)} = \frac{{}^{1}\pi_{ij}^{(l)} \cdot {}^{2}\pi_{ij}^{(l)} \cdot {}^{4}\pi_{ij}^{(l)} \cdot {}^{7}\pi_{ii}^{(l)}}{{}^{3}\pi_{ii}^{(l)} \cdot {}^{5}\pi_{ii}^{(l)} \cdot {}^{6}\pi_{ii}^{(l)}},$$

$$(3)$$

где ${}^{r}\pi_{ii}^{(l)}\left(r=\overline{1,7}\right)$ - элементы матриц в одномерных цепях Маркова с двумя состояниями: по горизонтали ${}^{1}\mathbf{\Pi} = \left\|{}^{1}\pi_{ij}^{(l)}\right\|_{2\times 2}$, вертикали ${}^{2}\mathbf{\Pi} = \left\|{}^{2}\pi_{ij}^{(l)}\right\|_{2\times 2}$, времени ${}^{4}\mathbf{\Pi} = \left\|{}^{4}\pi_{ij}^{(l)}\right\|_{2\times 2}$ и четырех сопутствующих матриц: ${}^{3}\mathbf{\Pi}^{(l)} = {}^{1}\mathbf{\Pi}^{(l)} \cdot {}^{2}\mathbf{\Pi}^{(l)}; {}^{5}\mathbf{\Pi}^{(l)} = {}^{1}\mathbf{\Pi}^{(l)} \cdot {}^{4}\mathbf{\Pi}^{(l)}; {}^{6}\mathbf{\Pi}^{(l)} = {}^{2}\mathbf{\Pi}^{(l)} \cdot {}^{4}\mathbf{\Pi}^{(l)}; {}^{7}\mathbf{\Pi}^{(l)} = {}^{3}\mathbf{\Pi}^{(l)} \cdot {}^{4}\mathbf{\Pi}^{(l)} \cdot {}^{2}\mathbf{\Pi}^{(l)} \cdot {}^{4}\mathbf{\Pi}^{(l)}.$

5. Алгоритм трехмерной нелинейной фильтрации многокомпонентных изображений

На основе трехмерной модели (1) и теории фильтрации условных марковских процессов синтезирован алгоритм нелинейной фильтрации последовательности РДИ:

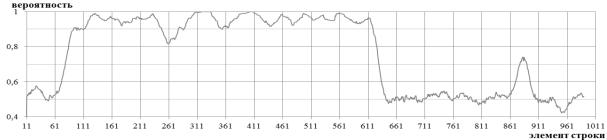
$$u\left(v_{4}^{(l)}\right) = \left[f\left(M_{1}\left(v_{4}^{(l)}\right)\right) - f\left(M_{2}\left(v_{4}^{(l)}\right)\right)\right] + u\left(v_{1}^{(l)}\right) + z_{1}\left[u\left(v_{1}^{(l)}\right), {}^{1}\pi_{ij}^{(l)}\right] + u\left(v_{2}^{(l)}\right) + z_{2}\left[u\left(v_{2}^{(l)}\right), {}^{2}\pi_{ij}^{(l)}\right] + u\left(v_{4}^{(l)}\right) + z_{4}\left[u\left(v_{4}^{(l)}\right), {}^{4}\pi_{ij}^{(l)}\right] + u\left(v_{3}^{(l)}\right) + z_{7}\left[u\left(v_{3}^{(l)}\right), {}^{7}\pi_{ij}^{(l)}\right] - \left[u\left(v_{3}^{(l)}\right), {}^{7}\pi_{ij}^{(l)}\right] - \left[u\left(v_{3}^{(l)}\right), {}^{3}\pi_{ij}^{(l)}\right] - u\left(v_{1}^{(l)}\right) - z_{5}\left[u\left(v_{1}^{(l)}\right), {}^{5}\pi_{ij}^{(l)}\right] - u\left(v_{2}^{(l)}\right) - z_{6}\left[u\left(v_{2}^{(l)}\right), {}^{6}\pi_{ij}^{(l)}\right] \ge H,$$
где $u\left(v_{4}^{(l)}\right) = \ln\left(p\left(M_{1}\left(v_{4}^{(l)}\right)\right) / p\left(M_{2}\left(v_{4}^{(l)}\right)\right)\right);$

$$\left[f\left(M_{1}\left(v_{4}^{(l)}\right)\right) - f\left(M_{2}\left(v_{4}^{(l)}\right)\right)\right] = 4\rho_{in}^{-2}\left[\pm 1 + \frac{\xi}{\sqrt{2}\rho_{in}}\right] - \text{разность} \quad \text{логарифмов} \quad \text{функций}$$

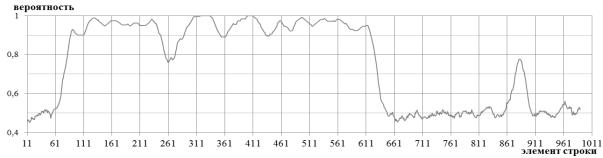
правдоподобия на выходе фазового дискриминатора при $M_1 = 1$, $M_2 = -1$;

$$z_{r}(\cdot) = \ln \frac{{}^{r}\pi_{ii}^{(l)} + {}^{r}\pi_{ji}^{(l)} \exp\left\{-u\left(\nu_{q}^{(l)}\right)\right\}}{{}^{r}\pi_{jj}^{(l)} + {}^{r}\pi_{ij}^{(l)} \exp\left\{u\left(\nu_{q}^{(l)}\right)\right\}}; \qquad q = \overline{1,7}; r = \overline{1,7};$$
(5)

где $r_{\pi_{ii}}^{(l)}$ ($r = \overline{1,7}$) - элементы матриц вероятностей переходов в одномерных цепях Маркова с двумя состояниями.


6. Пример вычисления оценок ${}^1\hat{\pi}^{(l)}_{ij}$ и ${}^2\hat{\pi}^{(l)}_{ij}$ в искусственном двоичном изображении в пределах скользящего окна размером 21x21

Двоичное изображение получено по двумерной математической модели с использованием матриц вероятностей переходов для каждой локальной области:


$${}^{1}\Pi = {}^{2}\Pi = \begin{bmatrix} 0.9 & 0.1 \\ 0.1 & 0.9 \end{bmatrix}$$
 ${}^{1}\Pi = {}^{2}\Pi = \begin{bmatrix} 0.5 & 0.5 \\ 0.5 & 0.5 \end{bmatrix}$

а) Фрагмент искусственного РДИ

б) Оценка вероятности перехода по горизонтали ${}^{1}\hat{\pi}_{ii}^{(l)}$

в) Оценка вероятности перехода по вертикали ${}^2\hat{\pi}^{(1)}_{ij}$

Рис.4.

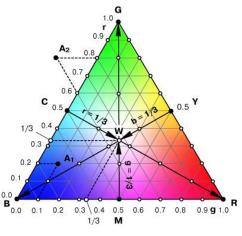
7. Алгоритм фильтрации с учетом скользящего окна

- 1.В пределах скользящего окна вычисляются оценки вероятностей переходов по горизонтали ${}^1\hat{\pi}^{(l)}_{ii}$, вертикали ${}^2\hat{\pi}^{(l)}_{ii}$ и между цветовыми компонентами ${}^4\hat{\pi}^{(l)}_{ii}$.
- 2. Вычисленные оценки вероятностей переходов подставляются в уравнение фильтрации (4).
- 3. На каждом последующем шаге окно перемещается на один элемент.


8. Пример трехмерной фильтрации цветного изображения

а) Фрагмент исходного изображения

в) Восстановленное двумерным фильтром


б) Зашумленное изображение ($p_{\text{вх}}^2 = -6 \text{ дБ}$)

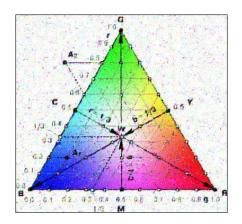
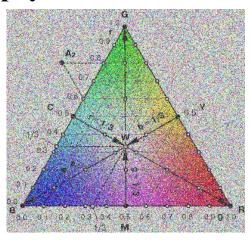
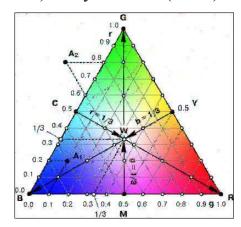

г) Восстановленное трехмерным фильтром с использованием сканирующего окна

Рис. 5.


9. Результаты фильтрации многокомпонентного RGB изображения «Треугольник»


а) Исходное

в) Восстановленное двумерным фильтром

б) Зашумленное (-6 дБ)

г) Восстановленное трехмерным фильтром с использованием сканирующего окна

10. СКО при двух- и трехмерной фильтрации (-6 дБ)

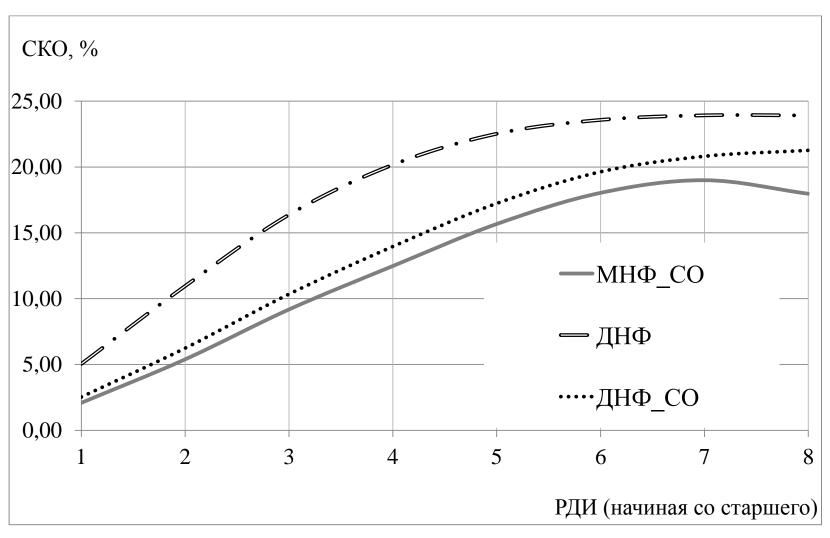


Рис. 7

11. Выигрыш в СКО для трехмерного фильтра с учетом окна

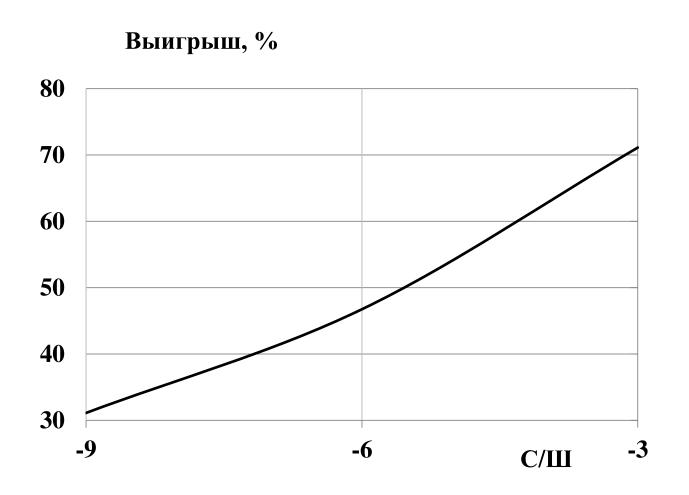


Рис. 8

12. Выводы

- 1. Алгоритм в диапазоне отношений сигнал/шум $p_{\text{вх}}^2 = -9 \dots 3 \text{ дБ}$ обеспечивает выигрыш в СКО от 30 до 70%;
- 2. Позволяет точнее выделить объекты малоразмерной формы и контуры объектов и, тем самым, повысить качество многокомпонентных изображений, искаженных БГШ;
- 3. Учитывая однородную структуру, алгоритм фильтрации может быть реализованы в форме параллельных вычислений;
- 4. Дальнейшие исследования будут направлены на разработку адаптивного алгоритма фильтрации, в котором статистические характеристики будут вычисляться в пределах скользящего окна по зашумленному изображению.