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Reality check: videogames
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 Trivia: What are the states and actions?



Real world
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We never know exactly
how it works
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Recap: Q-learning

One approach:
action Q-values

Q" (s,0) =E,.¢ {f' +~ymaxQ*(s,a’)
ull

5, II'J-]

We no longer need
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argming (Q(s,,a,)=[r+y-max, Q(s.,.a'))

n(s):argmax,Q(s,a)



Problem:
State space Is usually large,
sometimes continuous.

And so is action space;

However, states do have a structure, similar
states have similar action outcomes.



From tables to approximations

« Before:
- For all states, for all actions, remember Q(s,a)

* Now:
- Approximate Q(s,a) with some function
- e.g. linear model over state features

argmin,, ,(Q(s,,a,)—[r,+y-max,.Q(s,,,,a ))?

Trivia: should we use linear regression or logistic regression?



Deep learning approach: DON
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MDP again
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Deep learning approach: DON

Q-value Q-value 1 Q-value 2 Q-value n
Network Network
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Approximate Q-learning

[Q(S,ao), Q(s,al), Q(s,az)} Q-values:

x Qls0)=r+y-argmar, Qls...

Objective:

2

L=(Qls,,a,)-r+y-argmax,'Q(s,,;,a’)

Gradient step:

0L
=W, — 0 —
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D Q N €-greedy rule
(tune € or use

probabilistic rule)

Qvaluesis a
dense layer with ~
no nonlinearity
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Any neural
network you
can think of.
e conv

* pool

* dense
dropout
batchnorm




Approximate Q-learning

 Training samples are not o

Ly § 77 — expected greedy rewar
I I d — expected e-greedy reward
nlln y
30t il

 Model forgets parts of
environment it haven't
visited for some time,

 Fallbacks on the learning
curve

 Any ideas?




Decorrelating

Experience replay
« Maintain a large pool of (s,a,r,s') tuples from prior MDP sessions.
« Sample random batch from the pool each time when training NN
« Or use a prioritized sampling strategy to emphasize most important
samples

Target networks
* Obtain “Qreference(s,a)” term from an older neural network snapshot.
 Alternatively, maintain an exponential moving average of weights
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Multiple agent trick

4 )
parameter

server

Idea: Throw in several
agents with shared W.

« Chances are, they will be
exploring different parts of
the environment,

e More stable training,

* Requires a lot of interaction,

 Alternative to experience
replay.




More decorrelating

Double Q-learning
* Maintain two Q-networks
e Use one to pick best action and the other
to evaluate it's Q-value

Bootstrap DQN

« Maintain several “heads”, top layers of
NN responsible for Qvalues prediction.

« At the beginning of new game session,
choose one of the “heads” at random.

e This head decides what action to take
during current session.

 All other heads are trained on that
session without taking any real actions

Double Q
Learning

Shared network




Problem:

Most practical cases are partially observable:

Agent observation does not hold all information about process state
(e.g. human field of view).

« However, we can try to infer hidden states
from sequences of observations.

s;=m,:P(mlo,m,_,)

t t*

 [ntuitively that's agent memory state.
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Partially observable MDP

Obser
vation
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Hidden state

(markov assumption hold
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N-gram heuristic

|dea:
St?f O(St)

sc~(0(s,_,),apses0(8,1),0,,0(s,))
e.g. ball movement in breakout

- Does ball fly up or down? - Several frames



N-gram heuristic

3-frame ...j- 3-frame
window window




Deep Recurrent RL

(s, a); (S, a)t+1
. - i Recurrent agent memory
1 &t
LSTM 1 LSTM

] - Agent has his own hidden state.
o “+1 . Trained via BPTT with a fixed depth

7 q - Problem: next input depends on
T T chosen action

- Even more autocorrelations :)
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Deep Recurrent RL

Learning curves for KungFuMaster
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Most important slide

RL isn't magical

e It won't learn everything in the world given any data
and random architecture.

« Sparse & delayed rewards still a problem

 Less playing Atari, more real world problems

» Slowly getting rid of heuristics towards mathematical
soundness

« Machine Intelligence revolution date TBA
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Let's go play some atari!
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