Reinforcement learning
Episode 3

Approximate & deep RL

Yandex - o O
» Data Factory LAMBDA " British Hedgehog
Preservation Society

Reality check: videogames

100

150

200

250

1798
600

3
PLAYER HN
50 EHERY

100 100
150 150
200 200

0 20 40 &0 80 100 120 140 0 20 40 B0 A0 100 120 140

0 20 40 60 80 100120140160

 Trivia: What are the states and actions?

Real world

Obser
vation

—P» observe Agent apply

action

action

?1

We never know exactly
how it works

Real world

Partial?
~Infinite?

appl
—P» observe Agent ac?t%r/l |
Large?
Conti-
nuous?

?1

We never know exactly
how it works

Recap: Q-learning

One approach:
action Q-values

Q" (s,0) =E,.¢ {f' +~ymaxQ*(s,a’)
ull

5, II'J-]

We no longer need

2

argming (Q(s,,a,)=[r+y-max, Q(s.,.a'))

n(s):argmax,Q(s,a)

Problem:
State space Is usually large,
sometimes continuous.

And so is action space;

However, states do have a structure, similar
states have similar action outcomes.

From tables to approximations

« Before:
- For all states, for all actions, remember Q(s,a)

* Now:
- Approximate Q(s,a) with some function
- e.g. linear model over state features

argmin,, ,(Q(s,,a,)—[r,+y-max,.Q(s,,,,a))?

Trivia: should we use linear regression or logistic regression?

Deep learning approach: DON

Conmvolution Convolution Fully connected Fully connected
- - - i
0 : : o o . ER
of] @] A AN —
. . . . e =
. . . firem)
50 o] / t kL !
| i N . -]
e 'E] L] L] “
ol @ B, = @: 1 ©
— . . -
_ . . L] ++'§:l
1 L] L] L]
0] N /b 1
150 [+ 4 .
i L] L2 L]
) gl g =) . . L
200 F— L . . -
[] L] a

0 20 40 60 80 100 120 140

Ll
oo

MDP again

—

_> e

Obser
vation

Agent

Environment

apply

action |

action

Deep learning approach: DON

Q-value Q-value 1 Q-value 2 Q-value n
Network Network

N T

State | Action State

) 2-
Li(0;) =E(s.a,r.9)~u(D) (T +7 max O(s',a’; 0,) — O(sa; 9:’))

DON

Deep learning approach

qasnee

11

Approximate Q-learning

[Q(S,ao), Q(s,al), Q(s,az)} Q-values:

x Qls0)=r+y-argmar, Qls...

Objective:

2

L=(Qls,,a,)-r+y-argmax,'Q(s,,;,a’)

Gradient step:

0L
=W, — 0 —

image Wii—
oW

D Q N €-greedy rule
(tune € or use

probabilistic rule)

Qvaluesis a
dense layer with ~
no nonlinearity

/

I

| .'

a

[|

Change axis - -

order to fit in -

with lasagne -

convolutions *
4 o™

,‘\ .

',\ [|

. [|

image _ Dimshuffle -

(i,w,h,3) (i,3,w,h) v
a®

Any neural
network you
can think of.
e conv

* pool

* dense
dropout
batchnorm

Approximate Q-learning

 Training samples are not o

Ly § 77 — expected greedy rewar
I I d — expected e-greedy reward
nlln y
30t il

 Model forgets parts of
environment it haven't
visited for some time,

 Fallbacks on the learning
curve

 Any ideas?

Decorrelating

Experience replay
« Maintain a large pool of (s,a,r,s') tuples from prior MDP sessions.
« Sample random batch from the pool each time when training NN
« Or use a prioritized sampling strategy to emphasize most important
samples

Target networks
* Obtain “Qreference(s,a)” term from an older neural network snapshot.
 Alternatively, maintain an exponential moving average of weights

15

Multiple agent trick

4)
parameter

server

Idea: Throw in several
agents with shared W.

« Chances are, they will be
exploring different parts of
the environment,

e More stable training,

* Requires a lot of interaction,

 Alternative to experience
replay.

More decorrelating

Double Q-learning
* Maintain two Q-networks
e Use one to pick best action and the other
to evaluate it's Q-value

Bootstrap DQN

« Maintain several “heads”, top layers of
NN responsible for Qvalues prediction.

« At the beginning of new game session,
choose one of the “heads” at random.

e This head decides what action to take
during current session.

 All other heads are trained on that
session without taking any real actions

Double Q
Learning

Shared network

Problem:

Most practical cases are partially observable:

Agent observation does not hold all information about process state
(e.g. human field of view).

« However, we can try to infer hidden states
from sequences of observations.

s;=m,:P(mlo,m,_,)

t t*

 [ntuitively that's agent memory state.

18

Partially observable MDP

Obser
vation

_> observe Agent apply

action

action

Hidden state

(markov assumption hold

19

N-gram heuristic

|dea:
St?f O(St)

sc~(0(s,_,),apses0(8,1),0,,0(s,))
e.g. ball movement in breakout

- Does ball fly up or down? - Several frames

N-gram heuristic

3-frame ...j- 3-frame
window window

Deep Recurrent RL

(s, a); (S, a)t+1
. - i Recurrent agent memory
1 &t
LSTM 1 LSTM

] - Agent has his own hidden state.
o “+1 . Trained via BPTT with a fixed depth

7 q - Problem: next input depends on
T T chosen action

- Even more autocorrelations :)

Ut Ut+1

CNN CNN

| T

St St+1
Frostbite Beam Rider
3500 B0
3000 —— DRON 7000 =—— DRON .
2500 =t DUN G000 =+« DAN g o
2000 5000

i 4000 '
oL 3000 ,

100e 2000 g,
5000) 1000 __J/

=70 o
0 2000 10000 15000 0 a0 1000 1600 2000 2500 3000 a 1000

Deep Recurrent RL

Learning curves for KungFuMaster

120 final T T
— expected gready reward
— expected e-greedy reward
f .
A\l I
| -M| | '-'II rpll,lll| h
\I 1 : |
! [{1 i
| W t v I-“l | |
an i || | ||| | | P L] I'|
14 M\ f Ji K
RN / I
[/ | | | | |
| |
| | II \ l'lll o
A | | f |||
&0 | |] I.. W Ity
AN \I II'I'"«'III.‘ |
1| |
| 1
| .II |IIJ
‘-d‘lnl ?
1
an L \
f
20 | j' :
|
f
|
)

l} k| L L L 1 L 1
o 2000 4000 G000 8000 10000 12000 14000

Most important slide

RL isn't magical

e It won't learn everything in the world given any data
and random architecture.

« Sparse & delayed rewards still a problem

 Less playing Atari, more real world problems

» Slowly getting rid of heuristics towards mathematical
soundness

« Machine Intelligence revolution date TBA

24

Let's go play some atari!

25

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

