Exploration vs. Exploitation
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Exploration vs. Exploitation dilemma

e-)XafHaA cTpaTerns

[laBaTe Hayunm poboTa NATU Bnepes
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Exploration vs. Exploitation dilemma

e-)XafHaA cTpaTerns

[laBaTe Hayunm poboTa NATU Bnepes

OueHKka Q-PyHKLMNI:
Tt = Le+1 — Lt
Q(sp,a = YIIACTD) = Ax

I ‘ Q(sg,a = IATHYTbH) = 0

0 Azx X ‘

PelleHme: C BEpOSATHOCTLIO € AieflaeM arg max, ((so, a) = YIIACTb

cnyyaniHoe gencreme
NHaue, xagHoe




Exploration vs. Exploitation dilemma
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Exploration is hard

Lpicture source
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Self-Supervision in Reinforcement Learning

Markov Decision Process Auxiliary task
» S — set of states » S — set of states
» A — set of actions » A — set of actions
» 7:8 x A— P(S) — transitions » 7:85 x A— P(S) — transitions
» R&T — extrinsic reward » R'" — intrinsic reward
function | function
Extrinsic Motivation Intrinsic Motivation

(the task we want to solve) ("self-supervised")



Difference between motivations

WHERE IS
MY REWARD FUNCTION?

Extrinsic motivation:

» cakes, pain, life goals

«(provided by environment)y

Intrinsic motivation:

» joy, fun, curiosity

«(helps developing broad set of skills)»



Exploration Bonuses
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Exploration Bonuses

Basic idea: +1 for visiting new state

+

a) episodic (respawns each episode)

b) non-stationary: +£}, where n(s) is
a number of state visitations

*1 (during training!)

+
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Mario Oracle

Huge bonus for your x-coordinate!
(positive reward when going right,
negative reward when going left)



Mario Oracle
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Huge bonus for your x-coordinate!
(positive reward when going right,
negative reward when going left) Please, go right, Mario!




Novelty Detection

How to estimate novelty of states?
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Novelty Detection

How to estimate novelty of states?

» solve some regression task with states as input

» the error on some state s € & is a proxy of novelty!

—— ground truth
— model

x data
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Why prediction error can be high?

v data novelty
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Why prediction error can be high?

v data novelty

stochastic targets: if target is stochastic function of input, error of
deterministic model will not be zero.

non-stationary targets: if target changes with time, prediction error will
spike proportional to changes.

task is too complex: if your model is not rich enough or lacks some
necessary input, error will not be zero.

imperfect optimizer
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Random Network Distillation (RND)*

*Exploration by Random Network Distillation (2018)

25



Random Network Distillation (RND)*
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Predictor Network

*Exploration by Random Network Distillation (2018)
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RND: details

rintr(s) ‘o % ||¢}Pred'|ctnr(5) . ﬂl.f)tarEEt (5) “3

"How to Break Your Random Network Distillation
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RND: details

1

rintr(s) — 5

||¢)pred'|ctnr(5) . IﬂIIL.')target (5)“3

» carefull initialization: random network should produce various outputs for
different states.”

"How to Break Your Random Network Distillation
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» carefull initialization: random network should produce various outputs for
different states.”

» carefull normalization: normalize states using some mean and std
(precomputed using several random agent games with no training)
» do not change these statistics during training!

» start RL algorithm a bit later: when you are just born, everything is very
novel!
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RND: details

1

rintr(s) — 5

||¢}pred'|ctnr(5) . IﬂIIL.')target (5)“3

» carefull initialization: random network should produce various outputs for
different states.”

» carefull normalization: normalize states using some mean and std
(precomputed using several random agent games with no training)

» do not change these statistics during training!

» start RL algorithm a bit later: when you are just born, everything is very
novel!

» carefull scaling: look after scale of your intrinsic reward!
» RND: divide by running std of intrinsic rewards!

"How to Break Your Random Network Distillation 33



Combining motivations

Straightforward idea: RL algorithm works with
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Combining motivations

Straightforward idea: RL algorithm works with

r — j‘,.|I'|tr _|_ rE:u:tr

Scaling is important though good exploration bonus expires with
time!
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Combining motivations

Straightforward idea: RL algorithm works with

r — j‘,.|I'|tr _|_ rE:u:tr

Scaling is important though good exploration bonus expires with
time!

Possible option:

QW(S: E) - iTr:tr(S? E) —|_ l:—:-ctr(s'-' 3)
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RND: intrinsic motivation signal
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Curiosity

‘ Curiosity is the error of your world model.} \

1Curious model-building control systems (1991)
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Curiosity

‘ Curiosity is the error of your world model.} \

World model f(s, a) tries to predict the outcome s’

1 .
SII£(s, ) = s'|[> — min

1Curious model-building control systems (1991)
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Curiosity

‘ Curiosity is the error of your world model.} \

World model f(s, a) tries to predict the outcome s’

1 .
SII£(s, ) = s'|[> — min

Its error is intrinsic reward:

_ 1
(s, a,5") = 5lIf(s,a) — sl

1Curious model-building control systems (1991)
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Surprise Maximization vs State Novelty

I HAVE NEVER
BEEN HERE

I COULD NOT
PREDICT IT!

41



Curiosity: naive approach
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Curiosity: naive approach
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Many problems here...

X generating pictures is pretty expensive
% learning a lot of unnecessary information
X comparing pictures in raw pixels space?
x what if environment is not deterministic?




Curiosity on VAE features
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Curiosity on VAE features
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Curiosity on VAE features
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Curiosity on VAE features
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More general idea actually!

Encode complex state spaces in embeddings and solve RL tasks in embedding
space!




Noisy TV Problem

Try to predict next frame! In raw pixels, please.

49



All you need is good embedding

Let ¢(s): S — RY construct embeddings of states.

What do we want from this embedding:
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All you need is good embedding

Let ¢(s): S — RY construct embeddings of states.

What do we want from this embedding:
» Filtered: no irrelevant noise should be present.

» Sufficient: potentially task-relevant
information must be saved.

» Compact: we do not want to train image
generators.

» Stable: ¢ should not change with time or at
least change as slow as possible.
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Inverse Dynamics Model

Question: can loss of inverse model be used as curiosity?

D’:‘S,f%m 4

Learning to Play with Intrinsically-Motivated Self-Aware Agents (2018) showed that policy
selecting actions that maximize loss of inverse model (you need one more network predicting
the losses then) leads to «child playing» behaviors. 55
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Intrinsic Curiosity Module (ICM)

ENCODER

o~
<§m“"fm“"; §¢;< -
a J A e\ €

MODEL

ENCODER @




Intrinsic Curiosity Module

(ICM)
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ICM: Results®

1.2

ICM + A3C
— ICM (pixels) + A3C

Extrinsic Rewards per Episode
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Mumber of training steps (in millions)

40% of observation image is augmented

' : : - [CM still fi 1l
with noise (VizDoom environment). CM still performs we

®Curiosity-driven Exploration by Self-supervised Prediction (2017)
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Comparing embeddings’
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Unity ML Agents: Pyramids environment?®

8Solving Sparse Reward Tasks with Curiosity
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Pyramids: Curiosity only!



Pyramids: Extrinsic motivation 4+ Curiosity
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Curiosity: results
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ICM: issues

Procrastination issue: Noisy TV that
agent can interact with!




ICM: issues

Procrastination issue: Noisy TV that
agent can interact with!

«Short-termed» issue: ICM considers
only one-step transitions s, a, s’.




