Exploration vs. Exploitation

Алгоритм

1. Инициализируем Q(s,a)=0 для всех s,a

- 1. Инициализируем Q(s,a)=0 для всех s,a
- 2. Взаимодействуем со средой:
 - ullet $a^* = rg \max_a Q(s,a)$ выбираем действие

- 1. Инициализируем Q(s,a)=0 для всех s,a
- 2. Взаимодействуем со средой:
 - ullet $a^* = rg \max_a Q(s,a)$ выбираем действие
 - ullet $s',r=\mathrm{CPE} \mathrm{ДA}(s,a^*)$ применяем его в среде

- 1. Инициализируем Q(s,a)=0 для всех s,a
- 2. Взаимодействуем со средой:
 - ullet $a^* = rg \max_a Q(s,a)$ выбираем действие
 - ullet $s',r=\mathrm{CPE} \mathrm{ДA}(s,a^*)$ применяем его в среде
 - $Q(s,a^*):=r+\gamma\max_{a'}Q(s',a')$ обновляем **Q-**функцию

- 1. Инициализируем Q(s,a)=0 для всех s,a
- 2. Взаимодействуем со средой:
 - ullet $a^* = rg \max_a Q(s,a)$ выбираем действие
 - ullet $s',r=\mathrm{CPE} \mathrm{ДA}(s,a^*)$ применяем его в среде
 - $Q(s,a^*):=r+\gamma\max_{a'}Q(s',a')$ обновляем **Q-**функцию
 - $ullet s \leftarrow s'$

ϵ -жадная стратегия

Давайте научим робота идти вперед

Оценка Q-функции:

$$Q(s_0, a =$$
УПАСТЬ $) = 0$

$$Q(s_0, a = \text{ШАГНУТЬ}) = 0$$

 $rg \max_a Q(s_0,a) =$ УПАСТЬ

ϵ -жадная стратегия

Давайте научим робота идти вперед

$$r_t = x_{t+1} - x_t$$

Оценка Q-функции:

$$Q(s_0, a =$$
УПАСТЬ $) = 0$

$$Q(s_0, a = \text{ШАГНУТЬ}) = 0$$

$$rg \max_a Q(s_0,a) =$$
УПАСТЬ

ϵ -жадная стратегия

Давайте научим робота идти вперед

$$r_t = x_{t+1} - x_t$$

Оценка Q-функции:

$$Q(s_0, a =$$
УПАСТЬ $) = \Delta x$

$$Q(s_0, a = \text{ШАГНУТЬ}) = 0$$

 $rg \max_a Q(s_0,a) =$ УПАСТЬ

ϵ -жадная стратегия

Давайте научим робота идти вперед

$$r_t = x_{t+1} - x_t$$

Решение: с вероятностью ϵ делаем случайное действие Иначе, жадное

Оценка Q-функции:

$$Q(s_0, a =$$
УПАСТЬ $) = \Delta x$

$$Q(s_0, a = \text{ШАГНУТЬ}) = 0$$

$$rg \max_a Q(s_0,a) =$$
УПАСТЬ

Exploration is hard

¹picture source

Self-Supervision in Reinforcement Learning

Markov Decision Process

- \triangleright S set of states
- \triangleright \mathcal{A} set of actions
- $ightharpoonup \mathcal{T} \colon \mathcal{S} imes \mathcal{A} o \mathcal{P}(\mathcal{S})$ transitions
- \triangleright \mathcal{R} reward function

Self-Supervision in Reinforcement Learning

Markov Decision Process

- \triangleright S set of states
- \triangleright \mathcal{A} set of actions
- $ightharpoonup \mathcal{T} \colon \mathcal{S} imes \mathcal{A} o \mathcal{P}(\mathcal{S})$ transitions
- \triangleright \mathcal{R} reward function

Self-Supervision in Reinforcement Learning

Markov Decision Process

- \triangleright S set of states
- \triangleright \mathcal{A} set of actions
- $ightharpoonup \mathcal{T}: \mathcal{S} \times \mathcal{A} \to \mathcal{P}(\mathcal{S})$ transitions
- ▶ Rextr extrinsic reward function

Auxiliary task

- \triangleright S set of states
- \triangleright \mathcal{A} set of actions
- $ightharpoonup \mathcal{T} \colon \mathcal{S} imes \mathcal{A} o \mathcal{P}(\mathcal{S})$ transitions
- Rintr intrinsic reward function

Extrinsic Motivation (the task we want to solve)

Intrinsic Motivation ("self-supervised")

Difference between motivations

Extrinsic motivation:

cakes, pain, life goals

«(provided by environment)»

Intrinsic motivation:

joy, fun, curiosity

«(helps developing broad set of skills)»

Exploration Bonuses

Basic idea: +1 for visiting new state

Exploration Bonuses

Basic idea: +1 for visiting new statea) episodic (respawns each episode)

Exploration Bonuses

Basic idea: +1 for visiting new state

- a) episodic (respawns each episode)
- b) non-stationary: $+\frac{1}{n(s)}$, where n(s) is a number of state visitations (during training!)

Mario Oracle

Huge bonus for your x-coordinate! (positive reward when going right, negative reward when going left)

Mario Oracle

Huge bonus for your x-coordinate! (positive reward when going right, negative reward when going left)

Please, go right, Mario!

How to estimate novelty of states?

How to estimate novelty of states?

solve some regression task with states as input

How to estimate novelty of states?

solve some regression task with states as input

How to estimate novelty of states?

- solve some regression task with states as input
- ▶ the error on some state $s \in S$ is a proxy of novelty!

How to estimate novelty of states?

- solve some regression task with states as input
- ▶ the error on some state $s \in S$ is a proxy of novelty!

√ data novelty

- √ data novelty
- x stochastic targets: if target is stochastic function of input, error of deterministic model will not be zero.

 A stochastic targets: if target is stochastic function of input, error of deterministic model will not be zero.

 A stochastic targets: if target is stochastic function of input, error of deterministic model will not be zero.

 A stochastic targets: if target is stochastic function of input, error of deterministic model will not be zero.

 A stochastic targets: if target is stochastic function of input, error of deterministic model will not be zero.

 A stochastic targets: if target is stochastic function of input, error of deterministic model will not be zero.

 A stochastic targets: if target is stochastic function of input, error of deterministic model will not be zero.

 A stochastic targets: if target is stochastic function of input, error of deterministic model will not be zero.

 A stochastic targets: if targets is stochastic function of input, error of deterministic model will not be zero.

 A stochastic targets: if targets is stochastic function of input, error of deterministic model will not be zero.

 A stochastic targets: if targets is stochastic function of input, error of deterministic model will not be zero.

 A stochastic targets: if targets is stochastic function of input, error of deterministic model will not be zero.

 A stochastic targets: if targets is stochastic function of input, error of deterministic model will not be zero.

 A stochastic targets: if targets is stochastic function of input, error of deterministic model will not be zero.

 A stochastic targets: if targets is stochastic function of input, error of deterministic model will not be zero.

 A stochastic targets: if targets is stochastic function of input, error of deterministic model will not be zero.

 A stochastic targets: if targets is stochastic function of input, error of deterministic model will not be zero.

 A stochastic targets: if targets is stochastic function of input, error of deterministic model will not be zero.

- √ data novelty
- x stochastic targets: if target is stochastic function of input, error of deterministic model will not be zero.
- x non-stationary targets: if target changes with time, prediction error will spike proportional to changes.

- √ data novelty
- x stochastic targets: if target is stochastic function of input, error of deterministic model will not be zero.
- x non-stationary targets: if target changes with time, prediction error will spike proportional to changes.
- x task is too complex: if your model is not rich enough or lacks some necessary input, error will not be zero.

- √ data novelty
- x stochastic targets: if target is stochastic function of input, error of deterministic model will not be zero.
- x non-stationary targets: if target changes with time, prediction error will spike proportional to changes.
- x task is too complex: if your model is not rich enough or lacks some necessary input, error will not be zero.
- × imperfect optimizer

Random Network Distillation (RND)⁴

⁴Exploration by Random Network Distillation (2018)

Random Network Distillation (RND)⁴

Predictor Network

⁴Exploration by Random Network Distillation (2018)

RND: details

$$r^{\mathsf{intr}}(s) \coloneqq \frac{1}{2} \|\phi^{\mathsf{predictor}}(s) - \phi^{\mathsf{target}}(s)\|_2^2$$

⁵How to Break Your Random Network Distillation

RND: details

$$r^{\mathsf{intr}}(s) \coloneqq \frac{1}{2} \|\phi^{\mathsf{predictor}}(s) - \phi^{\mathsf{target}}(s)\|_2^2$$

carefull initialization: random network should produce various outputs for different states.⁵

⁵How to Break Your Random Network Distillation

$$r^{\mathsf{intr}}(s) \coloneqq \frac{1}{2} \|\phi^{\mathsf{predictor}}(s) - \phi^{\mathsf{target}}(s)\|_2^2$$

- carefull initialization: random network should produce various outputs for different states.⁵
- carefull normalization: normalize states using some mean and std (precomputed using several random agent games with no training)

⁵How to Break Your Random Network Distillation

$$r^{\mathsf{intr}}(s) \coloneqq \frac{1}{2} \|\phi^{\mathsf{predictor}}(s) - \phi^{\mathsf{target}}(s)\|_2^2$$

- carefull initialization: random network should produce various outputs for different states.⁵
- carefull normalization: normalize states using some mean and std (precomputed using several random agent games with no training)
 - × do not change these statistics during training!

⁵How to Break Your Random Network Distillation

$$r^{\mathsf{intr}}(s) \coloneqq \frac{1}{2} \|\phi^{\mathsf{predictor}}(s) - \phi^{\mathsf{target}}(s)\|_2^2$$

- carefull initialization: random network should produce various outputs for different states.⁵
- carefull normalization: normalize states using some mean and std (precomputed using several random agent games with no training)
 - × do not change these statistics during training!
- start RL algorithm a bit later: when you are just born, everything is very novel!

⁵How to Break Your Random Network Distillation

$$r^{\mathsf{intr}}(s) \coloneqq \frac{1}{2} \|\phi^{\mathsf{predictor}}(s) - \phi^{\mathsf{target}}(s)\|_2^2$$

- carefull initialization: random network should produce various outputs for different states.⁵
- carefull normalization: normalize states using some mean and std (precomputed using several random agent games with no training)
 - × do not change these statistics during training!
- start RL algorithm a bit later: when you are just born, everything is very novel!
- carefull scaling: look after scale of your intrinsic reward!

⁵How to Break Your Random Network Distillation

$$r^{\mathsf{intr}}(s) \coloneqq \frac{1}{2} \|\phi^{\mathsf{predictor}}(s) - \phi^{\mathsf{target}}(s)\|_2^2$$

- carefull initialization: random network should produce various outputs for different states.⁵
- carefull normalization: normalize states using some mean and std (precomputed using several random agent games with no training)
 - x do not change these statistics during training!
- start RL algorithm a bit later: when you are just born, everything is very novel!
- carefull scaling: look after scale of your intrinsic reward!
 - RND: divide by running std of intrinsic rewards!

⁵How to Break Your Random Network Distillation

Combining motivations

Straightforward idea: RL algorithm works with

$$r = r^{\text{intr}} + r^{\text{extr}}$$

Combining motivations

Straightforward idea: RL algorithm works with

$$r = r^{\text{intr}} + r^{\text{extr}}$$

Scaling is important though good exploration bonus expires with time!

Combining motivations

Straightforward idea: RL algorithm works with

$$r = r^{intr} + r^{extr}$$

Scaling is important though good exploration bonus expires with time!

Possible option:

$$Q^{\pi}(s,a) = Q^{\pi}_{\mathsf{intr}}(s,a) + Q^{\pi}_{\mathsf{extr}}(s,a)$$

RND: intrinsic motivation signal

Curiosity

Curiosity is the error of your world model.¹

¹Curious model-building control systems (1991)

Curiosity

Curiosity is the error of your world model.¹

World model f(s, a) tries to predict the outcome s':

$$\frac{1}{2}\|f(s,a)-s'\|_2^2\to \min_f$$

¹Curious model-building control systems (1991)

Curiosity

Curiosity is the error of your world model.¹

World model f(s, a) tries to predict the outcome s':

$$\frac{1}{2} \|f(s,a) - s'\|_2^2 \to \min_f$$

Its error is intrinsic reward:

$$r^{\mathsf{intr}}(s, a, s') \coloneqq \frac{1}{2} \|f(s, a) - s'\|_2^2$$

¹Curious model-building control systems (1991)

Surprise Maximization vs State Novelty

Curiosity: naive approach

Curiosity: naive approach

Many problems here...

- × generating pictures is pretty expensive
- × learning a lot of unnecessary information
- × comparing pictures in raw pixels space?
- × what if environment is not deterministic?

More general idea actually!

Encode complex state spaces in embeddings and solve RL tasks in embedding space!

Noisy TV Problem

Try to predict next frame! In raw pixels, please.

Let $\phi(s) \colon \mathcal{S} \to \mathbb{R}^d$ construct embeddings of states.

Let $\phi(s) \colon \mathcal{S} \to \mathbb{R}^d$ construct embeddings of states.

What do we want from this embedding:

Filtered: no irrelevant noise should be present.

Let $\phi(s) \colon \mathcal{S} \to \mathbb{R}^d$ construct embeddings of states.

- **Filtered**: no irrelevant noise should be present.
- Sufficient: potentially task-relevant information must be saved.

Let $\phi(s) \colon \mathcal{S} \to \mathbb{R}^d$ construct embeddings of states.

- **Filtered**: no irrelevant noise should be present.
- Sufficient: potentially task-relevant information must be saved.
- Compact: we do not want to train image generators.

Let $\phi(s) \colon \mathcal{S} \to \mathbb{R}^d$ construct embeddings of states.

- **Filtered**: no irrelevant noise should be present.
- Sufficient: potentially task-relevant information must be saved.
- Compact: we do not want to train image generators.
- ▶ **Stable**: ϕ should not change with time or at least change as slow as possible.

Inverse Dynamics Model

Question: can loss of inverse model be used as curiosity?

¹Learning to Play with Intrinsically-Motivated Self-Aware Agents (2018) showed that policy selecting actions that maximize loss of inverse model (you need one more network predicting the losses then) leads to «child playing» behaviors.

Intrinsic Curiosity Module (ICM)

Intrinsic Curiosity Module (ICM)

ICM: Results⁶

40% of observation image is augmented with noise (VizDoom environment).

ICM still performs well!

⁶Curiosity-driven Exploration by Self-supervised Prediction (2017)

Comparing embeddings⁷

⁷Large-Scale Study of Curiosity-Driven Learning (2018)

Unity ML Agents: Pyramids environment⁸

⁸Solving Sparse Reward Tasks with Curiosity

Pyramids: Curiosity only!

Pyramids: Extrinsic motivation + Curiosity

Curiosity: results

ICM: issues

Procrastination issue: Noisy TV that agent can *interact* with!

ICM: issues

<u>Procrastination issue:</u> Noisy TV that agent can *interact* with!

<u>«Short-termed» issue:</u> ICM considers only one-step transitions s, a, s'.