Metrics for scheduling problems with many machines

Lazarev A., Lemtyuzhnikova D., Werner F.

-*MMPO*

Moscow, 2019

Lazarev A. A. ICS RAS

Moscow, 2019

P. 1 from 15

3

ヘロト ヘヨト ヘヨト ヘヨト

Many algorithms exist to solve scheduling problems

Algorithm	Exact	Approximation
Advantage	The objective function is calculated without	Good speed and relative simplicity
	any error	
Disadvantages	Time-consuming	There are no estimates of
	calculations	the objective function error

Approximate polynomial scheme

- Guaranteed polynomial complexity
- Evaluation of the solutions accuracy: the accuracy value forms the complexity of the algorithm

Formulation of the problem

Jobs $j \in N = \{1, ..., n\}$ are serviced on machines $i \in M = \{1, ..., m\}$. Interrupts are not allowed. The machine serves one job at a time.

- release date r_j ,
- due date d_j,

р

c

• processing times $0 \le p_{ij} \le +\infty$ on machine $i \in M$.

Relations between jobs are given by the graph G.

Splitting N jobs into subsets of N_i jobs generates a schedule.

For each set N_i you need to find a sequence of orders π_i for the machine *i*.

Pred(*j*) - the set of jobs served before *j* according to the graph *G*, $(k \rightarrow j)_{\pi_i}$ jobs processed on *i* before *j* in the π_i .

A starting time s_j for all $j \in N_i$, i = 1, ..., m. The starting time of a job $j \in N_i$, i = 1, ..., m in the schedule π :

$$s_{j}(\pi) = \max\left\{r_{j}, \max_{k \in Pred(j)}(s_{k}(\pi) + p_{ik}), \max_{(k \to j)\pi_{i}}(s_{k}(\pi_{i}) + p_{ik})\right\}.$$
 (1)

The compliting time of a job $j \in N_i$ in the schedule π :

$$C_j(\pi) = s_j(\pi) + p_{ij}, j \in N_i.$$

Lazarev A. A. ICS RAS

Moscow, 2019

P. 3 from 15

The schedule π is called *feasible*, if $r_j \leq s_j(\pi)$ and $C_j(\pi) \leq s_k(\pi)$ for all arcs $(j,k) \in G$.

Remark

If a schedule π is known, the starting times S can be uniquely determined and vice versa, if all starting times S (together with the sets N_1, \ldots, N_m) are known, this uniquely identifies the resulting schedule π .

The optimization criterion is to minimize the maximum lateness:

$$L_{\max} = \min_{\pi} \max_{j \in \mathcal{N}} \left\{ C_j(\pi) - d_j \right\}.$$

If $d_j = 0$ for all jobs $j \in N$, the objective turns into the makespan criterion.

 $C_{\max} = \min_{\pi} \max_{j \in N} \left\{ C_j(\pi) \right\}.$

Lazarev A. A. ICS RAS

P. 4 from 15

An instance of A will be called some NP - difficult subproblem of the $P|prec, r_j|L_{max}$.

Many investigated NP - hard problems of the form $P|prec, r_j|L_{max}$, can be considered as an instance of A, in particular:

- *P*|*intree*, *r_j*, *p_j* = 1|*C*_{max} [Brucker (1977)];
- *P*|*outtree*, *p*_j = 1|*L*_{max} [Brucker (1977)];
- P2|chains|C_{max} [Du (1991)];
- P||C_{max} [Garey(1978)];
- P2||C_{max} [Lenstra (1977)];
- $P|prec, p_j = 1|C_{max}$ [Ullman (1975)].

Definition

A metric for A and B is a function that satisfies the properties:

$$\rho(A,B) = 0 \Leftrightarrow A = B \tag{2}$$

$$\rho(A,B) = \rho(B,A) \tag{3}$$

$$\rho(A, C) \le \rho(A, B) + \rho(B, C) \tag{4}$$

for all A, B, C.

For two arbitrary instances A and B of the problem $\{P, Q, R\} \mid prec, r_j \mid L_{max}$ we define the following functions:

$$\begin{cases} \rho_{d}(A,B) = \max_{j \in N} \{d_{j}^{A} - d_{j}^{B}\} - \min_{j \in N} \{d_{j}^{A} - d_{j}^{B}\};\\ \rho_{r}(A,B) = \max_{j \in N} \{r_{j}^{A} - r_{j}^{B}\} - \min_{j \in N} \{r_{j}^{A} - r_{j}^{B}\};\\ \rho_{\rho}(A,B) = \sum_{j \in N} \left(\max_{i \in M} (p_{ij}^{A} - p_{ij}^{B})_{+} + \max_{i \in M} (p_{ij}^{A} - p_{ij}^{B})_{-}\right);\\ \rho(A,B) = \rho_{d}(A,B) + \rho_{r}(A,B) + \rho_{\rho}(A,B), \end{cases}$$
(5)

Under the metric rho(A, B), $P|prec, r_j|L_{max}$ we will understand a function that satisfies the properties (2-5)

Lazarev A. A. ICS RAS

Definition

Let A be an instance with the set of jobs N and the precedence relation G. We say that instance B with the same set of jobs inherits the parameter x from the instance A if $x_i^B = x_i^A$ for all $j \in N$.

Let the instance D inherit all parameters from the instance A except the values $\{d_j, r_j, p_{ij} \mid j \in N, i \in M\}$, and let $\tilde{\pi}^D$ be an approximate solution of the instance D satisfying the condition

$$L^{B}_{\max}(\tilde{\pi}^{B}) - L^{B}_{\max}(\pi^{B}) \le \delta_{B}.$$
 (6)

Then

$$0 \le L^{\mathcal{A}}_{\max}(\tilde{\pi}^{\mathcal{B}}) - L^{\mathcal{A}}_{\max}(\pi^{\mathcal{A}}) \le \rho(\mathcal{A}, \mathcal{B}) + \delta_{\mathcal{B}}.$$
(7)

Definition

Let \mathfrak{A} be the space, where each point represents the data of an instance of the problem $P \mid prec, r_j \mid L_{max}$. The sub-space $\tilde{\mathfrak{A}} \subset \mathfrak{A}$ is called **P-cone**, if all instances represented by points of this sub-space can be solved by a polynomial or pseudo-polynomial algorithm. These points in $\tilde{\mathfrak{A}}$ are called **P-points**.

Definition

Let there be a point (instance) $A \notin \tilde{\mathfrak{A}}$. Using some metric ρ , we can construct a projection onto the space $\tilde{\mathfrak{A}}$ with respect to A. The resulting point (instance) $B \in \tilde{\mathfrak{A}}$ is called the projection of A by the metric ρ .

Definition

The sub-space $\tilde{\mathfrak{A}}_{\rho}^{\epsilon}(A) \in \tilde{\mathfrak{A}}$ is called an ϵ -projection of A by the metric ρ if for each of its points $x \in \tilde{\mathfrak{A}}$, the following inequality is satisfied:

$$L^{A}_{max}(\pi^{x}) - L^{A}_{max}(\pi^{A}) \leq \epsilon.$$

- We change the parameters {(r^A_j, p^A_j, d^A_j)|j ∈ N} of the original instance A = {G, (r^A_j, p^A_j, d^A_j)}, where j ∈ N, A ∉ 𝔅, so that the projection of A by the metric ρ gives an instance B = {G, (r^B_i, p^B_i, d^B_i)|j ∈ N} in the P-cone.
- We find an optimal schedule π^B for the instance B. According to Theorem 7, we apply the schedule π^B to the initial instance A. As a result, we obtain the following estimate of the absolute error:

$$0 \leq L^A_{\max}(\pi^B) - L^A_{\max}(\pi^A) \leq
ho(A, B).$$

Lazarev A. A. ICS RAS

We consider the P-cone when the parameters of the jobs satisfy the following k linearly independent inequalities:

$$XR + YP + ZD \le H,\tag{8}$$

where $R = (r_1, \ldots, r_n)^T$, $P = (p_1, \ldots, p_n)^T$ $(p_j \ge 0$ for all $j \in N$), $D = (d_1, \ldots, d_n)^T$ and X, Y, Z are matrices of dimension $k \times n$, $H = (h_1, \ldots, h_k)^T$ is a k-dimensional vector (the upper index ^T denotes the transpose operation). Then in the class of instances (8), we determine an instance B with minimal distance $\rho(A, B)$ to the original instance A by solving the following problem:

$$\begin{cases} (x^{d} - y^{d} + x^{r} - y^{r}) + \sum_{j \in N} x_{j}^{p} \longrightarrow \min \\ y^{d} \leq d_{j}^{A} - d_{j}^{B} \leq x^{d} \quad \text{for all } j \in N, \\ y^{r} \leq r_{j}^{A} - r_{j}^{B} \leq x^{r} \quad \text{for all } j \in N, \\ -x_{j}^{p} \leq p_{j}^{A} - p_{j}^{B} \leq x_{j}^{p} \quad \text{for all } j \in N, \\ 0 \leq x_{j}^{p} \quad \text{for all } j \in N, \\ XR^{B} + YP^{B} + ZD^{B} \leq H. \end{cases}$$

$$(9)$$

Lazarev A. A. ICS RAS

Moscow, 2019

P. 10 from 15

Cases of optimal solution of the problem

The linear programming problem (9) with 3n + 4 + n variables $(r_j^B, p_j^B, d_j^B, x_d, y_d, x_r, y_r, \text{ and } x_j^P, j = 1, ..., n)$ and 7n + k inequalities can sometimes be solved with a polynomial number (in *n* and *k*) of operations, given the specificity of the constraints of the problem (9). For problem $1|r_j|L_{\text{max}}$, there are two types of non-trivial P-points [Hoogeveen (1996)]:

$$\begin{cases} d_1 \leq \ldots \leq d_n, \\ d_1 - r_1 - p_1 \geq \ldots \geq d_n - r_n - p_n, \end{cases}$$
(10)

An optimal solution of problem $1|r_j|L_{\max}$ can be found in $O(n^3 \log n)$ operations. The linear programming problem (9) can be solved in $O(n \log n)$ operations. The minimum absolute error of the maximum lateness can be found in polynomial time, in this case with O(n) operations.

$$\max_{k\in N} \{d_k - r_k - p_k\} \le d_j - r_j \quad \text{for all} \quad j \in N. \tag{11}$$

An optimal schedule can be found in $O(n^2 \log n)$ operations.

Lazarev A. A. ICS RAS

New types of P-point were found [Lazarev (2019)]

$r_i \leq r_j \Rightarrow d_i \geq d_j$ for all $i, j \in N$;

 $d_j - p_j \leq d_{\min}(N)$ for all $j \in N$,

algorithm of solution with complexity $O(n^2)$ operations

۲

۲

$$r_i \leq r_j \Rightarrow d_i - p_i \geq d_j$$
 for all $i, j \in N$, $i \neq j$.

solution algorithm with complexity $O(n \log n)$ operations

Lazarev A. A. ICS RAS

P. 12 from 15

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の 0 0

Reduction scheme $\alpha \mid \beta \mid L_{\max} \rightarrow \alpha \mid \beta \mid C_{\max}$

Assume that the instance *B* inherits all parameters from the instance *A* except the due dates $\{d_i \mid j \in N\}$, and let $\tilde{\pi}^B$ be an approximate solution for the instance *B* satisfying the condition

$$0 \le L_{\max}^{B}(\tilde{\pi}^{B}) - L_{\max}^{B}(\pi^{B}) \le \delta_{B},$$
(12)

where π^{B} is an optimal solution, i.e., it satisfies the condition

$$L^{B}_{\max}(\pi^{B}) \leq L^{B}_{\max}(\pi) \quad \text{for all} \quad \pi.$$
(13)

Then we obtain

$$0 \leq L^{A}_{\max}(\tilde{\pi}^{B}) - L^{A}_{\max}(\pi^{A}) \leq \rho_{d}(A, B) + \delta_{B}.$$

Let there be some instance A of a problem $\alpha^A |\beta^A| L_{\text{max}}$ belonging to the class of NP-hard problems and a known approximate schedule $\tilde{\pi}^B$ (or even an optimal one π^B) for the instance B for the problem $\alpha^A |\beta^A| C_{\text{max}}$ with an absolute error not exceeding $\delta_B \geq 0$. In the instance B, we have $d_j^B = 0$ for all $j \in N$ and thus, from Lemma 13, we obtain the following bound:

$$0 \leq L^A_{\max}(\tilde{\pi}^B) - L^A_{\max}(\pi^A) \leq \rho_d(A,B) + \delta_B = \max_{j \in N} \{d^A_j\} - \min_{j \in N} \{d^A_j\} + \delta_B.$$

In fact, the obtained estimate allows to estimate the transition from the objective function L_{max} to the makespan C_{max} .

Lazarev A. A. ICS RAS

Moscow, 2019

P. 13 from 15

Conclusions:

- For the first time introduced **metrics** in the scheduling with which we can build approximate polynomial algorithms and obtain **absolute error estimate** of the objective function.
- In fact, the best use of previously found **polynomial solvable sub-cases** of the studied problem occurs.
- With this approach, it is possible to quantify the textbfmeasure of polynomial unsolvability of the problem.

Plans:

- comparison of the metric approach with other approaches (B&B, dynamic programming, etc.).)
- the use of a metric algorithm to other problems of discrete optimization

Thank you for your attention!

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ○ □ ● ○ ○ ○ ○