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Convey your message to the audience

You walk in the street.

Which poster do you pick?




The simplest problem statement in machine learning

(—A*VwS +w) W, x y 5(wly,9)

t i (x,¥)

f is the forecasting model,
S is the criterion,
T is an optimization algorithm,
W is some solution,
W = argmin S(wly, f).
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Problem statement for machine learning

Formal problem statement, an analyst has to set
1) an algebraic structure for the dataset from measurements
2) a data generation hypothesis from 1)
3) a model, or a mixture from 2)
4) an error function (quality criteria with restrictions) from 2)
)

5) an optimization algorithm from 3) and 4)
The result of the model construction is a Cartesian product

{models x data sets x quality critea}.

Def: Big data rejects the i.i.d. (independent and identically
distributed random variables) data generation hypothesis from 2). It

requests a mixture model.
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Analyst creates an optimal model
for expert to put it to operation

Quality criteria
o Accuracy: MAPE, AUC, F1 score
o Stability: forecasting variance, failure rate, parameter variance

o Complexity: number of parameters, Kolmogorov complexity

Origins of quality criteria

@ Theory: statistical hypotheses of data generation, algebraic structures
of data, models of measurement

@ Computations: a criterion is useful to an optimisation procedure
® Deployment: revenue, loss, failure rate
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Significant increase in complexity
and modest increase in accuracy

train
Logistic regression 53 08%
Neural network 59,85%
Regression forest 61,85%

Gradient boosting 63,58%

test  out-of-time # /'MLIUWW/CF—S

55,18%
57,04%
57,01%

58,31%

57,50%
58,27%
59,61%

59,50%

=
2240
> 1000
10 900

Model selection is an important problem!

.. it was a banking credit scoring model
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Stresstest procedures for feature selection algorithms*

A. M. Katrutsa®? and V. V. Strijov!

L Moscow Institute of Physics and Technology, Institutskiy lane 9, Dolgoprudny city, 141700, Russian
Federation
2Skolkovo Institute of Science and Technology, Novaya St., 100, Karakorum Building, 4th floor,
Skolkovo, 143025, Russian Federation

Abstract

This study investigates the multicollinearity problem and the performance of feature
selection methods in case of datasets have multicollinear features. We propose a stresstest
procedure for a set of feature selection methods. This procedure generates test data
sets with various configurations of the target vector and features. A number of some
multicollinear features are inserted in every configuration. A feature selection method
results a set of selected features for given test data set. To compare given feature selection
methods the procedure uses several quality measures. A criterion of the selected features
redundancy is proposed. This criterion estimates number of multicollinear features among
the selected ones. To detect multicollinearity it uses the eigensystem of the parameter
covariance matrix. In computational experiments we consider the following illustrative
methods: Lasso, ElasticNet, LARS, Ridge and Stepwise and determine the best one,
which solve the multicollinearity problem for every considered configuration of dataset.

Keywords: regression analysis, feature selection methods, multicollinearity, test data

sets, the criterion of the selected features redundancy.

1 Introduction

This study is devoted to multicollinearity problem and develops a testing procedure for
feature selection methods. Assume that data sets have multicollinear features. Multicollinearity
is a strong correlation between the features, which affect the target vector simultaneously.
The multicollinearity reduces the stability of the parameter estimations. The multicollinearity

problem, detection methods and methods to solve this problem are discussed in [I}, 2, [3]. The

*This publication is based on work funded by Skolkovo Institute of Science and Technology (Skoltech) in the
within the framework of the SkolTech/MITInitiative.
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parameters are changing continuously.

2 Feature selection problem statement

Let ® = {(X,y)} be the given data set, where the design matrix
X=X Xjr o X XER™ ™ andj e J ={1,...,n}.

The vector x; is called the j-th feature and the vector y = [y1,...,yn]" € ¥ C R™ is called
the target vector. Assume that the target vector y and design matrix X are related through

the following equation:
y =f(w,X) +e, (1)

where f maps the cartesian product of the feasible parameter space and the space of the m x n
matrices to the target vector domain, and € is the residual vector. The data fit problem is to
estimate the parameter vector w*,
w* = argmin S(w|D,, A, ), (2)
weRn
where S is the error function. The set ®, C © is a training set and the set A C 7 is the
active index set used in computing the error function S. In the stresstest procedure we use the

quadratic error function

S=ly—f(w. X)|3 (3)

and the linear regression function f(w, X) = Xw. The introduced stresstest procedure could be
applied to the generalised linear model selection algorithms, where the model is f = p=(Xw)

and p is a link function.

Definition 2.1 Let A* denote the optimum index set, the solution of the problem
A" = argmin S, (A|w*, D¢, f), (4)
ACT
where D¢ C D is the test set, w* is the solution of the problem (2) and Sy, is an error function

corresponding to a feature selection method m (5).

The feature selection problem (4) is to find the optimum index set A*. It must exclude
indices of noisy and multicollinear features. It is expected that if one uses features indexed by
the set A* then it brings more stable solution of the problem (2), in comparison to the case of
A=JT.

In the computational experiment we consider the feature selection methods from the set
9 = {Lasso, LARS, Stepwise, ElasticNet, Ridge}.

Definition 2.2 A feature selection method m € 91 is a map from the complete index set J
to active index set A C J:
m:J — A (5)



According to this definition we consider the terms feature selection problem and the model

selection problem to be synonyms.

Definition 2.3 Let a model be a pair (f,.A), where A C 7 is an index set. The model selection

problem is to find the optimum pair (f*,.A4*) which minimizes the error function S (3).

Definition 2.4 Call the model complexity C the cardinality of the active index set A, number

of the selected features:

C = A

Definition 2.5 Define the model stability R be logarithm of the condition number x of the
matrix X"X:

A
R=1Ink =In 2%,
min
where Apac and Ay, are the maximum and the minimum non-zero eigenvalue of the matrix
XTX. The features with indices from the corresponding active set A are used in computing

the condition number k.

3 Multicollinearity analysis in feature selection

In this section we give definitions of multicollinear features, correlated features and fea-
tures correlated with the target vector. In the following subsections we list and study the
multicollinearity criteria.

Assume that the features x; and the target vector y are normalized:
[yllz =1and [[x;ll2=1, j € J. (6)
Consider active index subset A C J.

Definition 3.1 The features with indices from the set A are called multicollinear if there exist
the index j, the coefficients ay, the index k € A\ j and sufficiently small positive number § > 0

such that )

X;— Y x| <6 (7)

ke A\j 9

The smaller § the higher degree of multicollinearity.

Definition 3.2 Call the features indexed 4,5 be correlated if there exists sufficiently small

positive number 4;; > 0 such that:
Ix; = X515 < 05 (8)

From this definition it follows that d;; = d;;. In the special case a = 0 k # j and
ar = 1 k = j the inequalities (8) and (7) are identically.
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Definition 3.3 A feature X is called correlated with the target vector y if there exists suffi-

ciently small positive number J,; > 0 such that

ly — Xj”% < dy;

Further used the following notations RSS (Residual Sum of Squares) and T'SS (Total Sum
of Squares):

m

1 m
_ *\ 2 . —\2 —
RSS = S(®,,w*) = |le||; and TSS = E (y; —7)*, wherey = . El Y- 9)

=1
3.1 Variance inflation factor

The variance inflation factor VIF; is used as a multicollinearity indicator [17]. The VIF;
is defined for j-th feature and shows a linear dependence between j-th feature and the other
features.

To compute VIF; estimate the parameter vector w* according to the problem (1) assuming
y = X, and extracting j-th feature from the index set J = J \ j. The functions RSS and TSS
are computed similar to (9). The VIF; is computed with the following equation:

1

where R? =1- ?—gg is the coefficient of determination.

According to [17] any VIF; 2 5 indicates that the associated elements of the vector w* are
poorly estimated because of multicollinearity. Denote by VIF the maximum value of VIF; for
all j € J:

VIF = max VIF;.
JjeT

However, VIF; can be infinitely large for some features. In this case it is impossible to determine
which features must be removed from the active set. This is major disadvantage of the variance
inflation factor.

Another multicollinearity indicator is the condition number x of the matrix X"X. The con-

dition number is defined as:

)\max
J
)\min
where the A\,.x and A\, are the maximum and minimum non-zero eigenvalues of the ma-

trix XTX.

The condition number shows how much does the matrix XX close to the singular matrix.

K =

The larger x the more ill-conditioned matrix X"X.

3.2 The Belsley criterion

To detect and remove indices of the multicollinear features from the active index set we

state the direct optimization problem using the Belsley criterion. We propose the new criterion



to compare feature selection methods: the criterion of the selected features redundancy. This
criterion uses the maximum cardinality of the redundant index set, which can be removed within
the error function does not raised above given value. The features are removed according to
the Belsley criterion described below. The formal definition of the the maximum cardinality of
the redundant index set is given by (16).

Assume that the parameter vector w € R™ has the multivariate normal distribution with

the expectation wyy, and the covariance matrix A=,
W ~ N(WML, Ail).

The estimation A~! of the covariance matrix A~! in the linear model is

~

A7l = (XTX)L

To inverse XX we use the singular value decomposition of the m x n matrix X = UAVT,
where U and V are the orthogonal matrices, and A is the diagonal matrix with the singular
values y/\; on the diagonal, such that

VN> >N > >N >0,
where ¢ = 1,...,7 and r = min(m,n). Thus, the inversion X"X is following:
(X™X) ' =VA AV

The columns of the matrix V is the eigenvectors and the squares of the singular values \; are
the eigenvalues of the matrix XX since XX = VATUTUAVT = VA?VT and X"XV = VA2

Definition 3.4 The ratio of the maximum eigenvalue A, to the i-th eigenvalue \; is called

the condition index n;

The large value of 7; indicates the close-to-linear relation between the features. The larger
value of 7; the closer relation between features to linear.

The variance of the vector w* elements are estimated as diagonal entries of the matrix

X™X = VA?VT:

" v
Var(w;) = -

j=1 "7

Definition 3.5 The coefficient variance proportion g;; is the j-th feature contribution to the
variance of the i-th element of the optimal parameter vector w*. The formal definition of the

coefficient variance proportion g;; is
_
Tij = 7
> 0/
j=1
where [v;;] = V and \; is the eigenvalue of the matrix X"X.
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Motrenko A., Strijov V., Weber G.-W. Bayesian sample size estimation for logistic regression // Journal of
Computational and Applied Mathematics, 2014, 255 : 743-752.

Sample Size Bayesian Estimation for Logistic Regression™

Anastasiya Motrenko?, Vadim Strijov®, Gerhard-Wilhelm Weber®

®*Moscow Institute of Physics and Technology, Moscow, Russia
bComputing Center of the Russian Academy of Sciences, Moscow, Russia
¢Institute of Applied Mathematics, Middle East Technical University, Ankara, Turkey

Abstract

The problem of sample size estimation is important in the medical applications, especially
in the cases of expensive measurements of immune biomarkers. The papers describes the
problem of logistic regression analysis including model feature selection and includes the
sample size determination algorithms, namely methods of univariate statistics, logistics
regression, cross-validation and Bayesian inference. The authors, treating the regression
model parameters as a multivariate variable, propose to estimate the sample size using the
distance between parameter distribution functions on cross-validated data sets.

Keywords: logistic regression, sample size, feature selection, Bayesian inference,
Kullback-Leibler divergence

1. Introduction

The paper is devoted to the logistic regression analysis [1], applied to classification
problems in biomedicine. A group of patients is investigated as a sample set; each patient
is described with a set of features, named as biomarkers and is classified into two classes.
Since the patient measurement is expensive the problem is to reduce number of measured
features in order to increase sample size.

The responsive variable is assumed to follow a Bernoulli distribution. Also, parameters
of the regression function are evaluated [2, 3].

With given set of features, the model is excessively complex. The problem is to select a
set of features of a smaller size, that will classify patients effectively. In logistic regression,
features are usually selected by stepwise regression [4, 5]. In the computational experiment,
exhaustive search is implemented. This makes the experts sure that all possible combina-
tions of the features were considered. The authors use the area under ROC curve [6] as
the optimum criterion in the feature selection procedure.

The problem of classification is associated with minimum sample size determination.
In the paper, the following methods are discussed:

*This project was supported by the Russian Foundation for Basic Research, grant 12-07-31095.
Email address: strijov@ccas.ru (Vadim Strijov)

Preprint submitted to Journal of Computational and Applied Mathematics September 20, 2012
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1. Method of confidence intervals: a method of univariate statistics.

2. Method of sample size evaluation in logistic regression [7, 8]: unlike the previous one,
this method considers the distribution of the responsive variable according to the
logistic regression model.

3. Cross-validation: a method which evaluates sample size by observing potential over-
fitting [9, 10].

4. Comparing different subsets of the same sample by computing Kullback-Leibler [11]
divergence between probability density functions of model parameters, evaluated at
these subsets.

The data, used while conducting computational experiment can be found here [12].

2. Classification problem

Consider the sample set D = {(x;,y;) : i =1,...,m}, of m objects (patients). Each
patient is described by n features (biomarkers), x; € R"™ and belongs to one of two classes:
y; € {0,1}. The logistic regression problem assumes that the vector of responsive variables
y=[y1,-.-, ym]T is a vector of Bernoulli random variables, y; ~ B(6;) with the probability
density function

p(ylw) = HQZ“ )i (1)

We use the maximim likelihood method7 write the error function for (1) as

E(w)=—Inp(y|lw) = Zyﬂn@ +(1—y)In(1—-6,). (2)

=1

find vector of parameters w of regression function, one has to solve the following opti-

mization problem:
= arg min F(w). (3)

weRn?

Let us define the probability of a case as

fxiw) = 1+ expt—x-Tw) = b ()

To solve the problem (3), using

df(§)
- f(1—
-,
we compute gradient of the error function F(w):
VE(w) = — Z(%(l —0;) — (1 —y3)0;)x; = Z(Qi —yi)xi = X7 (0 —y),
i=1 i=1
in which 6 = [01,...,0,,]" and the matrix X = [x] ... ,me represents features sets.
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Parameters are evaluated by Newton-Raphson method. Denote by 3 a diagonal ma-
trix with diagonal elements ¥; = 6,(1 —6;) (: = 1,...,m). Set the initial value w =

[wy, ..., w,]T of W
i=1
Then the (k + 1)-th iteration of evaluation of W is

Wil = W — (XTEX)_IXT(O — y) =

(XTEX) ' X"'S(Xw, — 16 — y)). (5)

The process is repeated until the Euclidean distance || w41 — wy, || is sufficiently small.
Thus, the classification algorithm is defined as:

(l(X, CO) = Sign(f(XJ W) - CO)) (6)
where ¢ is a cut-off value of regression function (4), defined by (7).

Quality of classification. Let us use an additional to (1) quality functional AUC, or the
area under the ROC-curve. Introduce TPR(§), which stands for true positive rate

m

TPR(E) = — 3 la(xs €) = 1]y = 1

i=1

3

and FPR(£)means the false positive rate
FPR(¢) = — i 0]
= Xla Yi = .
m :

Here, the following denotation is used:

oa L y=1
[y—l]—{(), 1

Thus, the bigger AUC value is, the better is the classifier.

Defining co value. Every point [FPR(co), TPR(¢g)] of the ROC-curve corresponds to some
co € [0,1] value. As shown in figure 1, the most distant from segment [(0,0);(1,1)] point of
the ROC-curve corresponds to the ¢ value used in (6):

¢ = arg max || (TPR(E), FPR(£))—(&,€) [= arg max V(TPR(E) - €)* — (FPR(E) - )2

gef0.1]

(7)

Defining ¢ includes computing AUC value and, therefore, computation of (6) and iterative
estimation of parameters w according to (5).



Generation of simple structured IR functions by genetic algorithm
without stagnation

Kulunchakov A.S.2, Strijov V. V.P

“Moscow Institute of Physics and Technology
b Computing Centre of the Russian Academy of Sciences

Abstract

This paper investigates an approach to construct new ranking models for Information Retrieval.
The IR ranking model depends on the document description. It includes the term frequency and
document frequency. The model ranks documents upon a user request. The quality of the model
is defined by the difference between the documents, which experts assess as relative to the request,
and the ranked ones. To boost the model quality a modified genetic algorithm was developed.
It generates models as superpositions of primitive functions and selects the best according to the
quality criterion. The main impact of the research if the new technique to avoid stagnation and to
control structural complexity of the consequently generated models. To solve problems of stagnation
and complexity, a new criterion of model selection was introduced. It uses structural metric and
penalty functions, which are defined in space of generated superpositions. To show that the newly
discovered models outperform the other state-of-the-art IR scoring models the authors perform a
computational experiment on TREC datasets. It shows that the resulted algorithm is significantly
faster than the exhaustive one. It constructs better ranking models according to the MAP criterion.
The obtained models are much simpler than the models, which were constructed with alternative
approaches. The proposed technique is significant for developing the information retrieval systems
based on expert assessments of the query-document relevance.

Keywords: information retrieval, evolutionary stagnation, ranking function, genetic

programming, overfitting

Email addresses: kulu-andrej@yandex.com (Kulunchakov A.S.), strijovegmail.com (Strijov V.V.)
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to have as high quality as the stored superpositions. This superposition highly probably will be
eliminated. Therefore the population will pass to the next iteration without changes. The genetic
algorithm stops actual generation.

To outperform the ranking functions found in [2], one needs to extend the set of superposi-
tions considered there. To perform it, a modified genetic algorithm is proposed. First, it detects
evolutionary stagnation and replaces the worst stored superpositions with random ones. This de-
tection is implemented with a structural metric on superpositions. Regularizers solve the problem
of overfitting. They penalize the excessive structural complexity of superpositions. The paper an-
alyzes various pairs regularizer-metric and chooses the pair providing a selection of better ranking
superpositions. All strengths and weakness of compared approaches are summarized in Table [T}

The paper [2] uses TREC collections to test ranking functions. To make the comparison
of approaches consistent, the present paper also use these collections. The collection TREC-7
(trec.nist.gov) is used as the train dataset to evaluate quality of generated superpositions. The

collections TREC-5, TREC-6, TREC-8 are used as test datasets to test selected superpositions.

2. Problem statement

o]

There given a collection C' consisting of documents {dl}lg‘l and queries Q = {¢;} d

1- For each

query g € ) some documents C, from C' are ranked by experts. These ranks g are binary
g:QxCy—=Y=1{0,1},

where 1 corresponds to relevant documents and 0 to irrelevant.
To approximate g, superpositions of grammar elements are generated. The grammar & is a

set {g1,..., gm,xi7yw}, where each g; stands for an mathematical function and J:ﬁ,, Y stand for

d

variables. These variables are tf-idf features of document-query pair (d, q). Feature z¢ is a frequency

of the word w € ¢ in d, feature y,, is a frequency of w in C:

l N,
d w a w
Loy ty lo 1 >7 w — s 1

where IV, is the number of documents from C' containing w, tj is the frequency of w in d, I is the
number of words in d (the size of a document d), I, is an average size of documents in C. Each
superposition f of grammar elements is stored as a directed labeled tree Ty with vertices labeled

by elements from &. The set of these superpositions is defined as §.
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The value of f on a pair (d,q) is defined as a sum of its values on (d,w), where w is a word

from q:

fldq) = F@d, ).

weq

The superposition f ranks the documents for each q. The quality of f is the mean average preci-

sion [I]

MAP(f,C,Q) =

1 Q
2l AveP(f,q),
a =

where

1Cq| k
4 (Prec(k k

k=1 (‘(fe‘c( ) x g( ))’ Prec(k) = a1 9(s)
Yoy Rel(k)

where g(k) € {0,1} is a relevance of the k-th document from C.

AveP(f,q) =

This paper aims at finding the superposition f, which maximizes the following quality function

f* = ar;gcg;axs(fv Cv Q)a S(fa Cv Q) = MAP(f’ C»Q) _R(f)a (2)

where R is a regularizer controlling the structural complexity of f.
The exhaustive algorithm in [2] generates random ranking superpositions consisting at most of
8 elements of the grammar &. Let §o be the set of the best superpositions selected in [2]. The

solution f* is compared with the superpositions from Fy with respect to to MAP.

3. Generation of superpositions

IR ranking functions are superpositions of expert-given primitive functions. These superposi-
tions are generated by the genetic algorithm. It uses an expertly given grammar & and constructs
superpositions of its elements. On each iteration it keeps a population of the best selected
superpositions. To update them and pass to the next iteration, it generates new superpositions
with use of the stored ones. Since the superpositions are represented as trees, the algorithm applies

crossover ¢(f, h) and mutation m(f) operations to the stored trees
c(fih):FxF =T m(f):F -3,

Definition 1. Crossover operation c(f,h) : § X § — § produces a new superpositions from given f
and h. This operation represents f and h as trees, uniformly selected a subtree for each of them

and swaps these subtrees.



Feature generation for classification and forecasting
problems

N.P. Ivkin
Moscow Institute of Physics and Technology

ivkinnikita@gmail.com
Abstract

We propose a problem statement for analysis of complex objects such as video
sequences with contents, e-mail letters with attached files, source codes of programs.
The proposed problem statement helps to organize work on a project, to simplify code
development and to reduce labor costs.

Feature generation problem statement

Let & be a set of measurements such that
G = {51, ...,ﬁm}.

The element s; of the set & can be a time series a video sequence or a scoring application.
Let y = {v1, ..., ym} be a set of class labels, or target variables.

Together with the set & a set V = V(&) is given. The set V = V(&) is called a
vocabulary and contains knowledge about the set of measurements. The vocabulary can
be obtained as the result of measurement structure analysis and used for model generation.

By G = {g1,...,9n} denote an expert-given set of primitive functions such that each
function g; maps an object s; to an element (7, j) of the design matrix X:

gj: (bj,ﬁi,V) —> Tij € Rl,

where b, is the set of parameters of the primitive function g;. By f denote the regression
model f together with the set of parameters w. To find the optimal parameters w we
minimize a loss function S(w|f, X,y) such that

w = argmin S(w|f, X,y).

weR”?

Examples

In this section we investigate classification and forecasting problem statements as the ex-
amples of feature generation problem.


ivkinnikita@gmail.com

Linear regression. According to the regression problem statement the target variable y
belongs to the set of real numbers, y € R. The model f maps each row of the matrix X to
the set R such that

f(w,X) = Xw,

where f = [f(w,x1), ..., f(W,x,,)]7. As an example of the loss function S, the sum-squared
error can be considered:

S(wlf. X,y) = [[f(w, X) — 3.

Classification. According to the two-class classification problem the target variable y
belongs to the set of class labels, y € {0,1}. Consider a logistic regression problem as an
example of classification problem. The model f maps each row of the matrix X to the
segment [0, 1] such that

1
f(w,X) =
(w, X) 1+ exp(—Xw)’
where optimal parameters w minimize a loss function

w = argmin S(w|f, X,y),

where

S(wl|f,X,y)=—1In (Z yilog f(xi,w) + (1 — ;) log(1 — f(xi,w))) :



HeKTOpre 3a4a4”N MallUMHHOTO O6yL|eHI/I$I

3afaya OUEHKU NapaMeTpoB MOoAeu,
3aja4a BbIOOpPa NPU3HAKOB UK OBBEKTOB BLIOOPKHY,

3afa4a BbIbOpa MOAENN ONTUMASILHOW CIOXKHOCTH,

vvyyy

3aja4a NoCTPOoeHUsi 1 BbIbOpa CTPYKTYpbl MOZEw,
P 33ja4a NPOBEPKU rMNoTe3bl MOPOXKAEHNS AAHHbIX.

Mpegnonaraetcsi, 4to dyHkumst ownbkn S(w|D, f) 3apaHa ncxoas
n3

P rMnoTesbl NOPOXXAEHUS AAHHBIX,

> nnbo U3 NpakTUHECKUX COODpakeHui.
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3afia4a HaxoXAeHUst Hanbosiee NpPaBAONOA0DHbIX
napameTpoB

3agana Bbibopka D = {(x;, yi)}, i € Z, dyHKums ownbkm
mMogenm S n mMogenb — napaMeTpuHecKoe CEMeNCTBO

yHkuuii f(w,x). TpebyeTcs HaiiTu Takue napameTpbl W MOAENH,
KOTOpble Dbl OCTaBASAAN MUHUMYM PYHKLMAN OIBKM

* = i D, f). 1
w" = arg min S(w|D, f) (1)

DyHKLMS OLWMBKN, OnpefeeHHast NOCPeACTBOM JorapudMUYecKoii
dbyHKuMn npasgonoaobus

S(w) =— In(p(D|w, f)),

obecneymnsaeT MakCUMMU3aLMIO NpaBaonoaobus napaMeTpos.
MapameTpebl, HallieHHbIE MUHUMU3aUMeD Tol yHKLMKU OWNBOK,
ByayT Ha3sbiBaTbCA Hanbonee npasnonofobHbIMY.



[MprMepbl PyHKLMU OWNDOKY B perpeccut U Knaccudukaymm

Perpeccus

MvnoTesa nopoxaenus ganubix: y ~ N (f, ).
DyHKuMs owmnbkn:

S(w) = lly —flI3.

Knaccudukauyus

lvnoTesa nopoxgerusi fauubix: y ~ B(f,1 — f).
PyHKUMS OLNBKN:

S(w) =) yilnf(wx)i + (1= yi) In(1 = F(w'x);).

i€l
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3asava Bbibopa onTuManbHOro Habopa npusHakos

» 3apgana sbibopka D = {(x;, i)}, i € Z.

> 3apaHo ciyyaiiHoe pa3bueHune MHOXKECTBO UHAEKCOB
anemenTOB Bblbopkn Z = L LI C.

> MHOXeCTBO HE3aBUCUMBbIX MEPEMEHHBIX X = [X1,..., X}, ..., Xn)
npouHgekcmposaro j € J = {1,..., n}.
> 3ajaHo MHOXeCTBO Mogeneii-npeteHaeHTos § = {f(w,x)}.

» Mogenb — napameTprnyeckoe CeEMeRCTBO
dbymkumnii f(w,x) = u(wTx), rae i — dyrkums cessm (8
cnyyae perpeccum i = id, B ciydae knaccudpmkaumm
I = Trep(-a):

» CrtpykTypa mogenn f4 3apgaHa MHoxecTBoM utgekcos A C J
1 O3HaYaeT BKAKOYEHNE NepemMeHHbIX X 4. MHave,
NCMONB3YIOTCSA TOILKO MPU3HAKM-CTONBLbLI MaTpuLbl X
C MHAEKCAMM N3 MHoxecTBa A.

> 3apana cyHKuMst owmnbkn S.
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3asava Bbibopa onTuManbHOro Habopa npusHakos

TpebyeTcs HaliTn Takoe nogMHoxecTBo nHaekcoe A C 7, koTopoe
Bbl [OCTABASNO MUHUMYM PYHKLMM

" = in S(falw*, D
A" = arg min S(fa|w”, Dc)

Ha pa3bueHun Boibopku D, onpeaeneHHOM MHOXECTEOM
nugekcos C.

ﬂpm 3TOM NapaMeETpbI w* MoAenn AO0JIXKHbl A40CTaBNATb MUHNMYM

pyHKUMM
= min S(w|Dg, f,
w argwel&l (w|Dg, fa)

Ha pa3buneHun BLIOOPKU, ONpeaeneHHOM MHOXeCTBOM L.
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Jluneiinbie mogenun

CeoricTBa OLEHOK nMapameTpoB 1 ycnosus aycca-Mapkosa

[ns nuneiinoii mogenn f = Xw npu runotese nopoxageHus
pantbix y ~ N (f, 1) dyHkumns ownbkn nmeet Bug (¢ TOHHOCTbIO
A0 COMHOXMTENS)

S(w) = ly — Xw|? = [Jel? = 3" (i — wx)?.
i€eT
MHK npegnonaraet BbinosiHEHNE CNEAYIOLWMX YCIOBUIA:
1) He3saBMCUMbIE NEPEMEHHbBIE X HE SIBASIOTCS CAyHaliHbIMU
BENNYMHAMN,
2) matemaTunueckoe oxungarue E(e) = 0,
3) aucnepcus D(g) = 02/ (ycnoeme roMockefakcM4HOCTH),
4) npn i # k kosapnauusi Cov(eq,e2) =0,
5) rank(X) =n< m.
MMpyn 5TOM OLEHKM W COCTOSITENbHBI N HeCcMeLueHHbI. [Tpn
BLIMONHEHUN YCNIOBMA roMockegakcudHoctn € ~ N(0,021) oHn
3 DEKTNBHbI.

MpuknapHoii perpeccuoHHbIn aHanus Yacte 2. OueHka napameTpoB Mogeneii



Jluneiinbie mogenun

Mpoekuns BekTopa y Ha NPOCTPAHCTBO CTONOLOB MaTpuubl X

PaccmoTpum BekTOp V OpTOroHasibHbIfi BEKTOPY PerpeccrioHHbIX
ocTaTkoB XW — y:

(Xv)T(Xw —y) =v (X" Xw — XTy) =0.

DT0 paBEHCTBO [OJKHO DbITb CNPaBeAsinBO 451 NPOU3BOJILHOMO V;

cnegosatesnibHo X' Xw — XTy = 0.
%

* Sy

A4
%2

Mpu obpatumoct XTX pewenne wy, = (XTX)"1XTy
€ANHCTBEHHO.

MpuknapHoii perpeccuoHHbIn aHanus Yactb 2. OueHka napameTpoB Mopenein



OueHka napameTpos mogenu

3agaun HaxoXXAeHUsA ONTUMasbHbIX U Hanbosiee NpaBAONOA00OHbIX
napameTpos

3apana Beibopka D = {(x;,yi)}, i € Z, dyHKums owmbku

Mogenm S n mMogenb — napaMeTpuHeckoe CeMencTBo

dyHkumii f(w, x). Tpebyetcs HaiiTu Takue napameTpsl W MOZenu,
KOTOpble Bbl AOCTABNAAN MUHUMYM PYHKUMM OLINOKN

* in S(w|D. f). 1
w’ = arg min (w|D, f) (1)

BapuanT 1. OyHkums ownbkn, onpeaeneHHas nocpeacTsoM
norapnMmnYeckoii pyHKUMM npasgonogobus

S(W) =Ep=-— In(p(D\w, B, f))v

obecneynBaeT MakCUMMU3aUMIO NpaBaonoaobus napaMeTpos.
MapameTpebl, HaliieHHbIE MUHUMU3aALMEDR 3TOl YHKLMM OWNOOK,
OyayT HasbiBaTbCA Haubonee npasgonofobHbIMu, a 3agaya (1)
VMEET BUA

Wy = arg min S(w|D, B, f).

MpuknagHoli perpeccnoHHbIli aHanns YHacTe 2. MNocTaHoBKa 3334 pPerpeccMoHHOro aHanusa



OueHka napameTpos mogenu

3agava HaxoXkaeHusi Hambosiee BEepPOSITHbIX NapamMeTpoB

BapuanT 2. OyHKumns owmnbkn
S(w) =— In(p(D[w, B, f)p(w|A, f)),

onpenesieHHasi NOCPEACTBOM anoCTEPUOPHOrO PacrpegeneHus
napameTpoB MOAeNU
p(D|w, B, f)p(w|A, f)

| p(D|W, B, f)p(w'|A, f)dw’’
w'ew

p(w|D,A B, f) =

obecreymBaeT MaKCMMMU3ALMIO BEPOSITHOCTI MAapamMeTpoOB.
MapameTpsbl, HalifeHHblE MUHUMN3aLMel Takol dyHKLUN OWmnBoK,
Ha3bIBalOTCs Haubosiee BeposiTHbIMU, a 3aga4va (1) umeet Bug

Wyp = argwmei)pv S(w|D, A, B, f).

MpeanonaraeTcs, YTo KOBapuUaLMOHHble MaTpuLbl A~ B~1
3ajaHbl.

MpuknagHoli perpeccnoHHbIli aHanns YHacTe 2. MNocTaHoBKa 3334 pPerpeccMoHHOro aHanusa



Resume: model generation and selection cheat-sheet

A non-exhaustive list

What are hypothesis on data set?
» Set prior and posterior distribution hypothesis and
construct internal criterion
» Assume one model or a mixture
» Assume outliers, class imbalances
How we generate models?
» Set a universal model
» Use primitive functions and rules of generation
» Forecast a model
How we select an optimal model?
» Use feature selection algorithms
» Use hyper-parameter analysis
» Run exhaustive search or genetic algorithm
How we check the model has the optimal structure?
» Use external criterions: AUC, BIC, Cp, Complexity, Stability



