Автоматизация научных исследований в машинном обучении (практика, В.В. Стрижов)

Материал из MachineLearning.

Перейти к: навигация, поиск

Короткий адрес страницы http://bit.ly/AutomationML

Содержание

2019

Задача 1

  • Название: Прогнозирование направления движения цены биржевых инструментов по новостному потоку.
  • Задача: Построить и исследовать модель прогнозирования направления движения цены. Задано множество новостей S и множество временных меток T, соответствующих времени публикации новостей из S. 2. Временной ряд P, соответствующий значению цены биржевого инструмента, и временной ряд V, соответствующий объему продаж по данному инструменту, за период времени T'. 3. Множество T является подмножеством периода времени T'. 4. Временные отрезки w=[w0, w1], l=[l0, l1], d=[d0, d1], где w0 < w1=l0 < l1=d0 < d1. Требуется спрогнозировать направление движения цены биржевого инструмента в момент времени t=d0 по новостям, вышедшим в период w.
  • Данные:
    1. Финансовые данные: данные о котировках (с интервалом в один тик) нескольких финансовых инструментов (GAZP, SBER, VTBR, LKOH) за 2 квартал 2017 года с сайта Finam.ru; для каждой точки ряда известны дата, время, цена и объем.
    2. Текстовые данные: экономические новости за 2 квартал 2017 года от компании Форексис; каждая новость является отдельным html файлом.
  • Литература:
    1. Usmanova K.R., Kudiyarov S.P., Martyshkin R.V., Zamkovoy A.A., Strijov V.V. Analysis of relationships between indicators in forecasting cargo transportation // Systems and Means of Informatics, 2018, 28(3).
    2. Kuznetsov M.P., Motrenko A.P., Kuznetsova M.V., Strijov V.V. Methods for intrinsic plagiarism detection and author diarization // Working Notes of CLEF, 2016, 1609 : 912-919.
    3. Айсина Роза Мунеровна, Тематическое моделирование финансовых потоков корпоративных клиентов банка по транзакционным данным, выпускная квалификационная работа.
    4. Lee, Heeyoung, et al. "On the Importance of Text Analysis for Stock Price Prediction." LREC. 2014.
  • Базовый алгоритм: Метод, использованный в статье (4).
  • Решение: Использование тематического моделирования (ARTM) и локальных аппроксимирующих моделей для перевода последовательности текстов, соответствующих различным временным меткам, в единое признаковое описание. Критерий качества: F1-score, ROC AUC, прибыльность используемой стратегии.
  • Новизна: Обоснование новизны и значимости идей (для редколлегии и рецензентов журнала).
  • Авторы: В.В. Стрижов (эксперт), К.В. Воронцов (эксперт), Иван Запутляев (консультант)

Задача 2

  • Название: Исследование опорных объектов в задаче метрической классификации временных рядов.
  • Задача: Функция DTW - это расстояние между двумя временными рядами, которые могут быть нелинейно деформированы друг относительно друга. Она ищет наилучшее выравнивание между двумя объектами, поэтому ее можно использовать в задаче метрической классификации объектов.

Один из методов решения задачи метрической классификации - измерение расстояний до опорных объектов и использование вектора этих расстояний в качестве признакового описания объекта. Метод DBA - это алгоритм построения центроидов (опорных объектов) для временных рядов на основе расстояния DTW. При построении расстояния между временным рядом и центроидом различные пары значений (например пиковые значения) более характерны для одного из классов, и влияние таких совпадений на значение расстояния должна быть выше. Необходимо исследовать различные способы построения опорных объектов, а также определение их оптимального числа. Критерием является качество работы метрического классификатора в задаче. В методе DBA для каждого центроида предлагается создавать вектор весов, который демонстрирует "значимость" измерений центриода, и использовать его в модифицированной функции расстояния weighted-DTW.

  • Данные: Данные описывают 6 классов временных рядов с акселерометра мобильного телефона. https://sourceforge.net/p/mlalgorithms/code/HEAD/tree/Group274/Goncharov2015MetricClassification/data/
  • Литература:
    1. DTW: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.215.7850&rep=rep1&type=pdf
    2. DBA: https://hal.sorbonne-universite.fr/hal-01630288/document
    3. weighted DTW: http://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=ia&paperid=414&option_lang=rus
  • Базовый алгоритм: Реализовать базовые методы:
    1. Выбор подмножества объектов обучающей выборки как опорных
    2. Предварительная обработка аномальных объектов
    3. Кластеризация объектов обучающей выборки для построения центроидов внутри кластера
    4. Использование метода DBA для построения опорных объектов
    5. Использование методов численной оптимизации для поиска оптимального вектора весов с заданными ограничениями
  • Решение: Расширение типов ограничений на вид вектора весов: бинарный вектор, одинаковый вектор для всех центроидов, бинарный одинаковый вектор для всех центроидов. Такое решение позволит экономить затраты энергии при работе датчиков мобильного устройства.

Исследование литературы и комбинация up-to-date методов.

  • Новизна: Не проводилось комплексного исследования различных способов построения центроидов и опорных элементов вместе с выбором их оптимального числа.
  • Авторы: Алексей Гончаров.

Задача 3

  • Название: Динамическое выравнивание многомерных временных рядов.
  • Задача: Характерным многомерным временным рядом является траектория точки в 3х-мерном пространстве. Две траектории необходимо выравнивать оптимальным образом друг относительно друга. Для этого используется расстояние DTW между двумя временными рядами. В классическом представлении DTW строится между одномерными временными рядами. Необходимо ввести различные модификации алгоритма для работы со временными рядами высокой размерности: траекториями, кортикограммами.
  • Данные: Данные описывают 6 классов временных рядов с акселерометра мобильного телефона. https://sourceforge.net/p/mlalgorithms/code/HEAD/tree/Group274/Goncharov2015MetricClassification/data/
  • Литература:
    1. Multidimensional DTW: https://pdfs.semanticscholar.org/76d3/5bd5a52453ebde80faaa1467d7effd74426f.pdf
  • Базовый алгоритм: Использование L_p расстояний между двумя измерениями временного ряда, их модификаций.
  • Решение: Исследование расстояний, устойчивых к изменению порядка координат, исследований расстояний неустойчивых к изменению порядка координат. Эксперименты с другими видами расстояний (косинусное, RBF, прочие).
  • Новизна: Нет полного обзора и исследования методов работы с многомерными временными рядами. Не исследована зависимость качества решения от подобранных расстояний между измерениями.
  • Авторы: Алексей Гончаров.

Задача 4

  • Название: Автоматическая настройка параметров АРТМ под широкий класс задач.
  • Задача: Открытая библиотека bigARTM позволяет строить тематические модели, используя широкий класс возможных регуляризаторов. Однако такая гибкость приводит к тому, что задача настройки коэффициентов оказывается очень сложной. Эту настройку можно значительно упростить, используя механизм относительных коэффициентов регуляризации и автоматический выбор N-грамм. Нужно проверить гипотезу о том, что существует универсальный набор относительных коэффициентов регуляризации, дающий "достаточно хорошие" результаты на широком классе задач. Дано несколько датасетов с каким-то внешним критерием качества (например, классификация документов по категориям или ранжирование). Находим лучшие параметры для конкретного датасета, дающие "локально лучшую модель". Находим алгоритм инициализации bigARTM, производящий тематические модели с качеством, сравнимым с "локально лучшей моделью" на её датасете. Критерий сравнимости по качеству: на данном датасете качество "универсальной модели" не более чем на 5% хуже, чем у "локально лучшей модели".
  • Данные: Несколько наборов текстовых коллекций, для которых известно оптимальное решение.
  • Литература:
    1. ВКР Никиты Дойкова: http://www.machinelearning.ru/wiki/images/9/9f/2015_417_DoykovNV.pdf
    2. Презентация Виктора Булатова на научном семинаре: https://drive.google.com/file/d/19pJ21LRPeeOxY4mkcSnQCRm93zOO4J5b/view
    3. Черновик с формулами: (файл будет позже)
  • Базовый алгоритм: PLSA / LDA / логрегрессия.
  • Решение: bigARTM с фоновыми темами и регуляризаторами сглаживания, разреживания и декорреляции (коэффициенты подобраны автоматически), а также с автоматически выделенными N-граммами.
  • Новизна: Потребность в автоматизированной настройке параметров модели и отсутствие подобных реализаций в научном сообществе.
  • Авторы: Виктор Булатов.

Задача 5

  • Название: Нахождение парафразов.
  • Задача: Парафразы — разные вариации одного и того же текста, одинаковые по смыслу, но отличающиеся лексически и грамматически, например: "Куда поехала машина" и "В каком направлении поехал автомобиль". Задача детектирования парафразов заключается в выделении в множестве текстов кластеров, таких что в каждом кластере содержатся только парафразы одного и того же предложения.

Самый простой способ выделения парафразов — кластеризация текстов, где каждый текст представлен "мешком слов".

  • . Данные: Есть открытые датасеты вопросов для тестирования и обучения на kaggle.com, есть открытые данные для тестирования с конференций semeval.
  • Литература:
    1. Будет позже
  • Базовый алгоритм: Использовать для выделения парафразов какой-нибудь из алгоритмов кластеризации документов, где каждый документ представлен мешком слов или tf-idf.
  • Решение: Использовать нейросетевые архитектуры для поиска парафразов, использовать в качестве признаков словосочетания, выделенные с помощью синтаксических анализаторов, использовать многоуровневую кластеризацию.
  • Новизна: Отсутствие реализаций для русского языка, которые будут использовать синтаксические анализаторы для подобной задачи, все текущие решения достаточно "просты".
  • Авторы: Артём Попов.

Задача 6

  • Название: On conformational changes of proteins using collective motions in torsion angle space and L1 regularization.
  • Задача: Torsion angles are the most natural degrees of freedom for describing motions of polymers, such as proteins. This is because bond lengths and bond angles are heavily constrained by covalent forces. Thus, multiple attempts have been done to describe protein dynamics in the torsion angle space. For example, one of us has developed an elastic network model (ENM) [1] in torsion angle space called Torsional Network Model (TNM) [2].

Functional conformational changes in proteins can be described in the Cartesian space using just a subset of collective coordinates [3], or even a sparse representation of these [4]. The latter requires a solution of a LASSO optimization problem [5]. The goal of the current project is to study if a sparse subset of collective coordinates in the torsion subspace can describe functional conformational changes in proteins. This will require a solution of a ridge regression problem with a L1 regularization constraint. The starting point will be the LASSO formulation.

  • . Данные: Experimental conformations will be extracted from the Protein Docking Benchmark v5 (https://zlab.umassmed.edu/benchmark/) and a few others. The TNM model can be downloaded from https://ub.cbm.uam.es/tnm/tnm_soft_main.php
  • Литература:
    1. Tirion MM. (1996) Large Amplitude Elastic Motions in Proteins from a Single-Parameter, Atomic Anal- ysis. Phys Rev Lett. 77:1905–1908.
    2. Mendez R, Bastolla U. (2011) Torsional network model: normal modes in torsion angle space better correlate with conformation changes in proteins. Phys Rev Lett. 2010 104:228103.
    3. SwarmDock and the use of normal modes in protein-protein docking. IH Moal, PA Bates - International journal of molecular sciences, 2010
    4. Modeling protein conformational transition pathways using collective motions and the LASSO method. TW Hayes, IH Moal - Journal of chemical theory and computation, 2017
    5. https://en.wikipedia.org/wiki/Lasso_(statistics)
    6. E. Frezza, R. Lavery, Internal normal mode analysis (iNMA) applied to protein conformational flexibility, Journal of Chemical Theory and Computation 11 (2015) 5503–5512.
  • Базовый алгоритм: The starting point will be a combination of methods from references 2 and 4. It has to be a LASSO formulation with the direction vectors reconstructed from the internal coordinates. The quality will be computed based on the RMSD measure between the prediction and the solution on several benchmarks. Results will be presented with statistical plots (see examples in references 3-4.
  • Новизна: This is an important and open question in computational structural bioinformatics - how to efficiently represent transitions between protein structures. Not much has been done in the torsional angle subspace (internal coordinates)[6] and nearly nothing has been done using L1 regularization [4].
  • Авторы: Ugo Bastolla on the torsional subspace (https://ub.cbm.uam.es/home/ugo.php), Sergei Grudinin on L1 minimization (https://team.inria.fr/nano-d/team-members/sergei-grudinin/)

Задача 7

  • Название: Привилегированное обучение в задаче аппроксимации границ радужки глаза
  • Задача: По изображению человеческого глаза определить окружности, аппроксимирующие внутреннюю и внешнюю границу радужки.
  • Данные: Растровые монохромные изображения, типичный размер 640*480 пикселей (однако, возможны и другие размеры)[1], [2].
  • Литература:
    • Адуенко А.А. Выбор мультимоделей в задачах классификации (научный руководитель В.В. Стрижов). Московский физико-технический институт, 2017. [3]
    • К.А.Ганькин, А.Н.Гнеушев, И.А.Матвеев Сегментация изображения радужки глаза, основанная на приближенных методах с последующими уточнениями // Известия РАН. Теория и системы управления, 2014, № 2, с. 78–92.
    • Duda, R. O. Use of the Hough transformation to detect lines and curves in pictures / R. O. Duda, P. E. Hart // Communications of the ACM. 1972. Vol. 15, no. 1. Pp.
  • Базовый алгоритм: Ефимов Юрий. Поиск внешней и внутренней границ радужки на изображении глаза методом парных градиентов, 2015.
  • Решение: См. Iris_circle_problem.pdf
  • Новизна: Предложен быстрый беспереборный алгоритм аппроксимации границ с помощью линейных мультимоделей.
  • Консультант: Радослав Нейчев (автор Стрижов В.В., эксперт Матвеев И.А.)

Задача 8

  • Название: Порождение признаков с помощью локально-аппроксимирующих моделей (Классификация видов деятельности человека по измерениям фитнес-браслетов).
  • Задача: Требуется проверить выполнимость гипотезы о простоте выборки для порожденных признаков. Признаки - оптимальные параметры аппроксимирующих моделей. При этом вся выборка не является простой и требует смеси моделей для ее аппроксимации. Исследовать информативность порожденных признаков - параметров аппроксимирующих моделей, обученных на сегментах исходного временного ряда. По измерениям акселерометра и гироскопа требуется определить вид деятельности рабочего. Предполагается, что временные ряды измерений содержат элементарные движения, которые образуют кластеры в пространстве описаний временных рядов. Характерная продолжительность движения – секунды. Временные ряды размечены метками вида деятельности: работа, отдых. Характерная продолжительность деятельности – минуты. Требуется по описанию временного ряда и кластера восстановить вид деятельности.
  • Данные: Временные ряды акселерометра WISDM (Временной ряд (библиотека примеров), раздел Accelerometry).
    • WISDM (Kwapisz, J.R., G.M. Weiss, and S.A. Moore. 2011. Activity recognition using cell phone accelerometers. ACM SigKDD Explorations Newsletter. 12(2):74–82.), USC-HAD или сложнее. Данные акселерометра (Human activity recognition using smart phone embedded sensors: A Linear Dynamical Systems method, W Wang, H Liu, L Yu, F Sun - Neural Networks (IJCNN), 2014)
  • Литература:
    • Motrenko A.P., Strijov V.V. Extracting fundamental periods to segment human motion time series // Journal of Biomedical and Health Informatics, 2016, Vol. 20, No. 6, 1466 - 1476. URL
    • Карасиков М.Е., Стрижов В.В. Классификация временных рядов в пространстве параметров порождающих моделей // Информатика и ее применения, 2016.URL
    • Кузнецов М.П., Ивкин Н.П. Алгоритм классификации временных рядов акселерометра по комбинированному признаковому описанию // Машинное обучение и анализ данных. 2015. T. 1, № 11. C. 1471 - 1483. URL
    • Исаченко Р.В., Стрижов В.В. Метрическое обучение в задачах многоклассовой классификации временных рядов // Информатика и ее применения, 2016, 10(2) : 48-57. URL
    • Задаянчук А.И., Попова М.С., Стрижов В.В. Выбор оптимальной модели классификации физической активности по измерениям акселерометра // Информационные технологии, 2016. URL
    • Ignatov A., Strijov V. Human activity recognition using quasiperiodic time series collected from a single triaxial accelerometer // Multimedia Tools and Applications, 2015, 17.05.2015 : 1-14. URL
  • Базовый алгоритм: Базовый алгоритм описан в работах [Карасиков, Стрижов: 2016] и [Кузнецов, Ивкин: 2014].
  • Решение: Требуется построить набор локально-аппроксимирующих моделей и выбрать наиболее адекватные. Найти оптимальный способ сегментации и оптимальное описание временного ряда. Построить метрическое пространство описаний элементарных движений.
  • Новизна: Создан стандарт построения локально-аппроксимирующих моделей. Соединение двух характеристических времен описания жизни человека, комбинированная постановка задачи.
  • Авторы: Р.Г. Нейчев, В.В. Стрижов, Олег Терехов (ответственный)

Задача 9

  • Название: Распознавание текста на основе скелетного представления толстых линий и сверточных сетей
  • Задача: Требуется построить две CNN, одна распознает растровое представление изображения, другая векторное.
  • Данные: Шрифты в растровом представлении.
  • Литература: Список работ [4], в частности arXiv:1611.03199 и
    • Goyal P., Ferrara E. Graph embedding techniques, applications, and performance: A survey. arXiv:1705.02801, 2017.
    • Cai H., Zheng V.W., Chang K.C.-C. A comprehensive survey of graph embedding: Problems, techniques and applications. arXiv:1709.07604, 2017.
    • Grover A., Leskovec J. node2vec: Scalable Feature Learning for Networks. arXiv:1607.00653, 2016.
    • Mestetskiy L., Semenov A. Binary Image Skeleton - Continuous Approach // Proceedings 3rd International Conference on Computer Vision Theory and Applications, VISAPP 2008. P. 251-258. URL
    • Жукова К.В., Рейер И.А. Связность базового скелета и параметрический дескриптор формы // Машинное обучение и анализ данных. 2014. Т. 1. № 10. С. 1354-1368. URL
  • Базовый алгоритм: Сверточная сеть для растрового изображения.
  • Решение: Требуется предложить способ свертывания графовых структур, позволяющий породить информативное описание скелета толстой линии.
  • Новизна: Предложен способ повышения качества распознавания толстых линий за счет нового способа порождения их описаний.
  • Авторы: Илья Жариков (эксперты Л.М. Местецкий, И.А. Рейер, В.В. Стрижов)

Задача 10

  • Название:
  • Задача:
  • Данные:
  • Литература:
  • Базовой алгоритм:
  • Решение:
  • Новизна::
  • Авторы: Илья Жариков

Задача 11

Задача 12

  • Название: Обучение машинного перевода без параллельных текстов.
  • Задача: Рассматривается задача построения модели перевода текста без использования параллельных текстов, т.е. пар одинаковых предложений на разных языках. Данная задача возникает при построении моделей перевода для низкоресурсных языков (т.е. языков, для которых данных в открытом доступе немного).
  • Данные: Выборка статей из Wikipedia на двух языках.
  • Литература:
    • [8] Unsupervised Machine Translation Using Monolingual Corpora Only
    • [9] Sequence to sequence.
    • [10] Autoencoding.
    • [11] Training with Monolingual Training Data.
  • Базовый алгоритм: Unsupervised Machine Translation Using Monolingual Corpora Only.
  • Решение: В качестве модели перевода предлагается рассмотреть кобминацию двух автокодировщиков, каждый из которых отвечает за представление предложений на одном из языков. Оптимизация моделей проводится таким образом, чтобы скрытые пространства автокодировщиков для разных языков совпадали. В качестве исходного представления предложений предлагается рассматривать их графовое описание, получаемое с использованием мультиязычных онтологий.
  • Новизна: Предложен способ построения модели перевода с учетом графовых описаний предложений.
  • Авторы: А.В. Грабовой, О.Ю. Бахтеев, В.В. Стрижов, Eric Gaussier

Задача 13

  • Название: Deep learning for RNA secondary structure prediction
  • Задача: RNA secondary structure is an important feature which defines RNA functional properties. Its importance can be illustrated by the fact, that it is evolutionary preserved and some types of functional RNAs always have the same secondary structure, for example all tRNAs fold into cloverleaf. As secondary structure often defines functions, knowing RNAs secondary structure may help investigate functions of novel RNA molecules. RNA folding is not as easy as DNA folding, because RNA is single stranded molecule which forms complicated base-pairing interactions, while DNA mostly exists as fully base paired double helices. Current methods of RNA structure prediction rely on experimentally evaluated thermodynamic rules, but with thermodynamics alone only 80% of structures can be accurately predicted. We propose an AI-driven method for predicting RNA secondary structure inspired by neural machine translation model.
  • Данные: RNA sequences in form of strings of characters
  • Литература: https://arxiv.org/abs/1609.08144
  • Базовой алгоритм: https://www.ncbi.nlm.nih.gov/pubmed/16873527
  • Решение: Deep learning recurrent encoder-decoder model with attention
  • Новизна: Currently RNA secondary structure prediction still remains unsolved problem and to the best of our knowledge DL approach has never been introduced in the literature before
  • Авторы: Мария Попова, консультант Филипп Никитин

Задача 14

  • Название: Deep Learning for reliable detection of tandem repeats in 3D protein structures подробнее в PDF
  • Задача: Deep learning algorithms pushed computer vision to a level of accuracy comparable or higher than a human vision. Similarly, we believe that it is possible to recognize the symmetry of a 3D object with a very high reliability, when the object is represented as a density map. The optimization problem includes i) multiclass classification of 3D data. The output is the order of symmetry. The number of classes is ~10-20 ii) multioutput regression of 3D data. The output is the symmetry axis (a 3-vector). The input data are typically 24x24x24 meshes. The total amount of these meshes is of order a million. Biological motivation : Symmetry is an important feature of protein tertiary and quaternary structures that has been associated with protein folding, function, evolution, and stability. Its emergence and ensuing prevalence has been attributed to gene duplications, fusion events, and subsequent evolutionary drift in sequence. Methods to detect these symmetries exist, either based on the structure or the sequence of the proteins, however, we believe that they can be vastly improved.
  • Данные: Synthetic data are obtained by ‘symmetrizing’ folds from top8000 library (http://kinemage.biochem.duke.edu/databases/top8000.php).
  • Литература: Our previous 3D CNN: [12] Invariance of CNNs (and references therein): [13], [14]
  • Базовой алгоритм: A prototype has already been created using the Tensorflow framework [4], which is capable to detect the order of cyclic structures with about 93% accuracy. The main goal of this internship is to optimize the topology of the current neural network prototype and make it rotational and translational invariant with respect to input data. [4] [15]
  • Решение: The network architecture needs to be modified according to the invariance properties (most importantly, rotational invariance). Please see the links below [16], [17] The code is written using the Tensorflow library, and the current model is trained on a single GPU (Nvidia Quadro 4000)of a desktop machine.
  • Новизна: Applications of convolutional networks to 3D data are still very challenging due to large amount of data and specific requirements to the network architecture. More specifically, the models need to be rotationally and transnationally invariant, which makes classical 2D augmentation tricks loosely applicable here. Thus, new models need to be developed for 3D data.
  • Авторы: эксперт Sergei Grudinin, консультанты Guillaume Pages, Vadim Strijov

Задача 15

  • Название: Формулировка и решение задачи оптимизации, сочетающей классификацию и регрессию, для оценки энергии связывания белка и маленьких молекул. Описание задачи [18]
  • Задача: С точки зрения биоинформатики, задача заключается в оценке свободной энергии связывания белка с маленькой молекулой (лигандом): наилучший лиганд в своем наилучшем положении имеет наименьшую свободную энергию взаимодействия с белком. (Далее большой текст, см. файл по ссылке вверху.)
  • Данные:
    • Данные для бинарной классификации. Около 12,000 комплексов белков с лигандами: для каждого из них есть 1 нативная поза и 18 ненативных. Основными дескрипторами являются гистограммы распределений расстояний между различными атомами белка и лиганда, размерность вектора дескрипторов ~ 20,000. В случае продолжения исследования и публикации в профильном журнале набор дескрипторов может быть расширен. Данные будут предоставлены в виде бинарных файлов со скриптом на python для чтения.
    • Данные для регрессии. Для каждого из представленных комплексов известно значение величины, которую можно интерпретировать как энергию связывания.
  • Литература:
  • Базовой алгоритм: [22]

В задаче классификации мы использовали алгоритм, похожий на линейный SVM, связь которого с оценкой энергии, выходящей за рамки задачи классификации, описана в указанной выше статье. В задаче регрессии можно использовать различные функции потерь.

  • Решение: Необходимо связать использованную ранее оптимизационную задачу с задачей регрессии и решить стандартными методами. Для проверки работы алгоритма будет использована кросс-валидация.

Есть отдельный тестовый сет, состоящий из (1) 195 комплексов белков и лигандов, для которых нужно найти наилучшую позу лиганда (алгоритм получения положений лиганда отличается от используемого при обучении), (2) комплексов белков и лигандов, для нативных поз которых нужно предсказать энергию связывания, и (3) 65 белков, для которых нужно найти наиболее сильно связывающийся лиганд.

  • Новизна: В первую очередь, интерес представляет объединение задач классификации и регрессии.

Правильная оценка качества связывания белка и лиганда используется при разработке лекарства для поиска молекул, наиболее сильно взаимодействующих с исследуемым белком. Использование описанной выше задачи классификации для предсказания энергии связывания приводит к недостаточно высокой корреляции предсказаний с экспериментальными значениями, в то время как использование одной лишь задачи регрессии приводит к переобучению.

  • Авторы Сергей Грудинин, Мария Кадукова

Задача 16

  • Название: Оценка оптимального объема выборки для исследований в медицине
  • Задача: В условиях недостаточного числа дорогостоящих измерений требуется спрогнозировать оптимальный объем пополняемой выборки.
  • Данные: Выборки измерений в медицинской диагностике, в частности, выборка иммунологических маркеров.
  • Литература:
    • Мотренко А.П. Материалы по алгоритмам оценки оптимального объема выборки в репозитории MLAlgorithms[23], [24].
  • Базовый алгоритм: Алгоритмы оценки объема выборки при .
  • Решение: Исследование свойств пространства параметров при пополнении выборки.
  • Новизна: Предложена новая методология прогнозирования объема выборки, обоснованная с точки зрения классической и байесовской статистики.
  • Авторы: А.М. Катруца, В.В. Стрижов, координатор Тамаз Гадаев

Задача 17

  • Название: Исследование свойств локальные моделей при пространственном декодировании сигналов головного мозга
  • Задача: При построении систем нейрокомпьютерного интерфейса (brain-computer interface) используются простые, устойчивые модели. Важным этапом построения такой модели является построение адекватного признакового пространства. Ранее такая задача решалась с помощью выделения признаков из частотных характеристик сигналов.
  • Данные: Наборы данных сигналов мозга ECoG/EEG.
  • Литература:
    1. Motrenko A.P., Strijov V.V. Multi-way feature selection for ECoG-based brain-computer Interface // Expert systems with applications. - 2018.
    2. Eliseyev A., Aksenova T. Stable and artifact-resistant decoding of 3D hand trajectories from ECoG signals using the generalized additive model //Journal of neural engineering. – 2014.
  • Базовой алгоритм: Сравнение предлагается производить с алгоритмом частных наименьших квадратов (partial least squares).
  • Решение: В данном работе предлагается учесть пространственную зависимость между сенсорами, которые считывают данные. Для этого необходимо локально смоделировать пространственный импульс/сигнал и построить прогностическую модель на основе локального описания.
  • Новизна: Предлагается существенно новый способ построения признакового описания в задаче декодирования сигналов.
  • Авторы: В.В. Стрижов, Tetiana Aksenova+1, консультант – Роман Исаченко

Задача 18

  • Название: Построение оптимальной модели декодирования сигналов при моделировании нейрокомпьютерного интерфейса.
  • Задача: Нейрокомпьютерный интерфейс (BCI) позволяет помочь людям с ограниченными возможностями вернуть их мобильность. По имеющемуся описанию сигнала прибора необходимо смоделировать поведение субъекта.
  • Данные: Наборы данных сигналов мозга ECoG/EEG.
  • Литература: kjm_ECoGLibrary_v7
  • Решение: В данной работе предлагается построить единую систему, решающую задачу декодирования сигналов. В качестве этапов построения такой системы предлагается решить задачи предобработки данных, выделения признакового пространства, снижения размерности и выбора модели оптимальной сложности.
  • Новизна: Предлагается систематический подход к решению задачи декодирования сигналов. В постановке задачи учитывается комплексная природа сигнала: непрерывная траектория движения, наличие дискретных структурных переменных (пальцы или движение суставов), наличие непрерывных переменных (позиция пальца или конечности).
  • Авторы: В.В. Стрижов, Tetiana Aksenova+1, консультант – Роман Исаченко

Задача 19

  • Название: Исследование зависимости качества распознавания онтологических объектов от глубины гипонимии.
  • Задача: Необходимо исследовать зависимость качества распознавания онтологических объектов на различных уровнях гипонимии понятий. Классическая постановка задачи распознавания именованных сущностей: https://en.wikipedia.org/wiki/Named-entity_recognition
  • Данные: Гипонимии из https://wordnet.princeton.edu/ , тексты разных доменов предположительно из WebOfScience.
  • Литература: Релевантные статьи для классической постановки http://arxiv-sanity.com/search?q=named+entity+recognition
  • Базовой алгоритм: В качестве алгоритма может использоваться https://arxiv.org/pdf/1709.09686.pdf или упрощенная его версия, исследования производятся с использованием библиотеки DeepPavlov.
  • Решение: Необходимо собрать датасет гипонимии (вложенности понятий) объектов с использованием WordNet, произвести автоматическую разметку онтологических объектов текстов различных доменов для нескольких уровней обобщения понятий, провести ряд экспериментов для определения качества распознавания онтологических объектов для разных уровней вложенности.
  • Новизна: Подобные исследования не производились, готовые датасеты с иерархической разметкой объектов отсутствуют. Распознавание онтологических объектов на различных уровнях гипонимии может быть использовано для производства дополнительных признаков при решении различных NLP (Natural language processing) задач, а также определения являются ли объекты парой гипоним-гипероним.
  • Авторы: Бурцев Михаил Сергеевич (эксперт), Баймурзина Диляра Римовна (консультант).

Задача 20

  • Название: Сравнение качества end-to-end обучаемых моделей в задаче ответа на вопросы в диалоге с учетом контекста
  • Задача: Задан фрагмент текста и несколько последовательных вопросов. Ответы на первые n вопросов известны. Нужно сформировать ответ на n+1 вопрос. В качестве ответа нужно указать непрерывный промежуток в тексте заданного фрагмента текста (номера начального и конечного слов). При оценке качества ответа задача сводится к классификации символов фрагмента на класс 0 (не входит в ответ) и 1 (входит в ответ).
  • Данные: Предоставляется размеченный датасет с фрагментами текста и наборами вопросов с ответами в диалоге
  • Литература: Статья Bi-directional Attention Flow for Machine Comprehension (BiDAF2017) описывает end-to-end модель ответов на вопросы по фрагменту без учета контекста диалога. Статья QuAC: Question Answering in Context (QuAC2018) описывает набор данных, содержит описание используемого базового алгоритма с учетом контекста диалога. Статьи с описанием других моделей вопрос-ответных систем (R-Net, DrQA)
  • Базовой алгоритм: Базовый алгоритм описан статьях и реализован (QuAC2018, BiDAF2017).
  • Решение: Предлагается изучить механизмы учета контекста (k-ctx, append, etc) и исследовать возможность их добавления в другие модели (DrQA, R-NET), либо предложить собственные для повышения качества по мере F1. Для изучения поведения модели используется визуализация внимания (attention visualization), обучаемых эмбеддингов, а также анализ ошибочных ответов. Предоставляется доступ к вычислительным ресурсам, используемые фреймворки: TensorFlow, PyTorch или Keras.
  • Новизна: Исследование проводится на новом датасете, для которого на данный момент имеется только базовый алгоритм. Подтверждение повышения качества от применения механизмов учета контекста диалога в других моделях указывает на применимость предлагаемых подходов для решения более широкого круга задач.
  • Авторы: Антон Хританков
Личные инструменты