Структурные методы анализа изображений и сигналов (курс лекций) / Задание 2

Материал из MachineLearning.

(Различия между версиями)
Перейти к: навигация, поиск
(+ Спецификация функций для первого варианта)
(Задание 2. Скрытые марковские модели.)
Строка 8: Строка 8:
Задание состоит из трех вариантов. Распределение вариантов задания по студентам см. [[Структурные методы анализа изображений и сигналов (курс лекций, А.С. Конушин, Д.П. Ветров, Д.А. Кропотов, О.В. Баринова, В.С. Конушин, 2009)#Оценка за курс|здесь]].
Задание состоит из трех вариантов. Распределение вариантов задания по студентам см. [[Структурные методы анализа изображений и сигналов (курс лекций, А.С. Конушин, Д.П. Ветров, Д.А. Кропотов, О.В. Баринова, В.С. Конушин, 2009)#Оценка за курс|здесь]].
 +
 +
Среда реализации для всех вариантов – MATLAB. Неэффективная реализация кода может негативно отразиться на оценке.
=== Вариант 1 ===
=== Вариант 1 ===
Строка 38: Строка 40:
==== Подсказки ====
==== Подсказки ====
Будут, когда сам разберусь как такую задачу решать
Будут, когда сам разберусь как такую задачу решать
-
 
-
 
-
Среда реализации – MATLAB. Неэффективная реализация кода может негативно отразиться на оценке.
 
==== Спецификация реализуемых функций ====
==== Спецификация реализуемых функций ====

Версия 16:48, 30 октября 2009

Статья в настоящий момент дорабатывается.
Д.А. Кропотов 14:18, 30 октября 2009 (MSK)


Содержание

Задание 2. Скрытые марковские модели.

Начало: 31 октября 2009

Срок сдачи: 15 ноября 2009

Задание состоит из трех вариантов. Распределение вариантов задания по студентам см. здесь.

Среда реализации для всех вариантов – MATLAB. Неэффективная реализация кода может негативно отразиться на оценке.

Вариант 1

Формулировка задания

Рассматривается классическая скрытая марковская модель первого порядка, в которой полное правдоподобие задается как: 
p(X,T|\theta)=p(t_1)\prod_{n=2}^Np(t_n |t_{n-1})\prod_{n=1}^Np(x_n |t_n )

Пусть скрытая компонента t_n в произвольный момент времени может принимать значения из множества {1,\ldots,К}. Априорное распределение на значение скрытой компоненты в первый момент времени задается вектором w_1,\ldots,w_K, причем все w_i неотрицательны и в сумме дают единицу. Распределение p(t_n |t_{n-1}) задается матрицей перехода A размера K\times K, где в ij-ой позиции стоит вероятность перехода из состояния i в состояние j. Все элементы этой матрицы неотрицательны и сумма элементов по каждой строке равна единице. Модель генерации данных задается нормальными распределениями со своими значениями вектора математического ожидания \mu_i и матрицы ковариации \Sigma_i для каждого состояния. Таким образом, набор параметров модели определяется вектором \vec{w}, матрицей A, значениями векторов математических ожиданий и матриц ковариаций для каждого состояния \{\mu_i,\Sigma_i\}_{i=1}^K.

Для выполнения задания необходимо реализовать:

  • Алгоритм генерации выборки из вероятностной модели СММ
  • EM-алгоритм обучения СММ при заданном числе состояний K.
  • Алгоритм Витерби для сегментации сигнала при известных значениях параметров СММ, учитывающий заданное распределение на длительность нахождения в одном состоянии

Пояснения к варианту

При использовании стандартного алгоритма Витерби, описанного в лекциях легко показать, что априорное распределение на длительность l_j нахождения в состоянии j является геометрическим, т.е. вероятность находиться в этом состоянии ровно s моментов времени равна

p(l_j=s)=A_{jj}^s(1-A_{jj})

Необходимо обобщить алгоритм Витерби на случай, когда априорное распределение на длительность нахождения в состоянии j имеет вид 
p(l_j=s)=\left{\begin{array}{cc}0 & s\not\in\[a,b\]\\ A_{jj}^s\frac{1-A_{jj}}{1-A_{jj}^{b-a}} & s\in\[a,b\]\end{array}\right.

Иными словами, в одном состоянии СММ не может находиться меньше a моментов времни и больше b моментов времени. Частным случаем может быть a=0, b=+\infty. В этом случае алгоритм сегментации должен давать результаты, аналогичные алгоритму Витерби.

Подсказки

Будут, когда сам разберусь как такую задачу решать

Спецификация реализуемых функций

Генерация выборки
[X, T] = HMM_GENERATE(N, w, A, Mu, Sigmas)
ВХОД
N — количество точек в генерируемой последовательности, uint32;
w — априорные вероятности для скрытых состояний, матрица типа double размера 1 x K;
A — матрица перехода, матрица типа double размера K x K;
Mu — центры гауссиан для каждого состояния, матрица типа double размера K x d, в которой в каждой строке стоит вектор мат.ожидания для соответствующего состояния;
Sigmas — матрицы ковариации гауссиан, массив типа double размера d x d x K, Sigmas(:,:,i) – матрица ковариации для i-ого состояния;
ВЫХОД
X — сгенерированная последовательность, матрица типа double размера N x d
T — последовательность скрытых состояний, матрица типа double размера 1 x N

Обратите внимание: количество признаков и количество скрытых состояний определяются неявно по размеру соответствующих элементов.

Сегментация
T = HMM_TEST(X, w, A, Mu, Sigmas, a, b)
ВХОД
X — входная последовательность, матрица типа double размера N x d, где N – количество точек в последовательности, d – количество признаков;
w — априорные вероятности, матрица типа double размера 1 x K, где K – количество скрытых состояний;
A — матрица перехода, матрица типа double размера K x K;
Mu — центры гауссиан для каждого состояния, матрица типа double размера K x d, в которой в каждой строке стоит вектор мат.ожидания для соответствующего состояния;
Sigmas — матрицы ковариации гауссиан, массив типа double размера d x d x K, Sigmas(:,:,i) – матрица ковариации для i-ого состояния;
a — минимально возможная длина сегмента, uint16, если параметр не задан (=[] или число входных параметров = 5), то по умолчанию = 0
b — максимально возможная длина сегмента, uint16, если параметр не задан (=[] или число входных параметров <= 6), то по умолчанию = +inf
ВЫХОД
T — полученная последовательность скрытых состояний, матрица типа double размера 1 x N
Обучение
[w, A, Mu, Sigmas, core] = HMM_EM_TRAIN(X, K)
[w, A, Mu, Sigmas, core] = HMM_EM_TRAIN(X, K, InputParameters)
ВХОД
X — входная последовательность, матрица типа double размера N x d, где N – количество точек в последовательности, d – число признаков;
K — количество скрытых состояний, число типа uint16;
InputParameters — (необязательный аргумент) набор дополнительных параметров, массив типа cell вида ParameterName1, ParameterValue1, ParameterName2, ParameterValue2 и т.д. Возможны следующие параметры:
  'w' — задаваемый пользователем вектор априорных вероятностей (соответственно, его не нужно определять в процессе EM-итераций);
  'A' — задаваемая пользователем матрица перехода;
  'Mu' — задаваемые пользователем центры гауссиан для каждого состояния;
  'Sigmas' — задаваемые пользователем матрицы ковариации гауссиан;
  'num_iter' — максимально допустимое число итераций EM-алгоритма;
  'tol_LH' — минимально допустимая величина отклонения по значению логарифма правдоподобия на одной итерации;
ВЫХОД
w — априорные вероятности для скрытых состояний, матрица типа double размера 1 x K;
A — матрица перехода, матрица типа double размера K x K;
Mu — центры гауссиан для каждого состояния, матрица типа double размера K x d, в которой в каждой строке стоит вектор мат.ожидания для соответствующего состояния;
Sigmas — матрицы ковариации гауссиан, массив типа double размера d x d x K, Sigmas(:,:,i) – матрица ковариации для i-ого состояния;
Core — все параметры для всех итераций EM-алгоритма, массив структур длины NumberOfIterations с полями ‘w’, ‘A’, ‘Mu’, ‘Sigmas’, ‘gamma’, ‘LH’, где gamma – матрица значений gamma для всех точек и всех состояний, LH – логарифм правдоподобия

Оформление задания

Вариант 2

Формулировка задания

Рассматривается классическая скрытая марковская модель первого порядка, в которой полное правдоподобие задается как: 
p(X,T|\theta)=p(t_1)\prod_{n=2}^Np(t_n |t_{n-1})\prod_{n=1}^Np(x_n |t_n )

Пусть скрытая компонента t_n в произвольный момент времени может принимать значения из множества {1,\ldots,К}. Априорное распределение на значение скрытой компоненты в первый момент времени задается вектором w_1,\ldots,w_K, причем все w_i неотрицательны и в сумме дают единицу. Распределение p(t_n |t_{n-1}) задается матрицей перехода A размера K\times K, где в ij-ой позиции стоит вероятность перехода из состояния i в состояние j. Все элементы этой матрицы неотрицательны и сумма элементов по каждой строке равна единице. Модель генерации данных задается нормальными распределениями со своими значениями вектора математического ожидания \mu_i и матрицы ковариации \Sigma_i для каждого состояния. Таким образом, набор параметров модели определяется вектором \vec{w}, матрицей A, значениями векторов математических ожиданий и матриц ковариаций для каждого состояния \{\mu_i,\Sigma_i\}_{i=1}^K.

Для выполнения задания необходимо реализовать:

  • Алгоритм генерации выборки из вероятностной модели СММ
  • EM-алгоритм обучения СММ при заданном числе состояний K.
  • Алгоритм Витерби для сегментации сигнала при известных значениях параметров СММ, работающий в реальном времени

Пояснения к варианту

При решении задачи сегментации с помощью алгоритма Витерби предполагаются, что наблюдаемые данные подаются последовательно. Необходимо модифицировать алгоритм ВИтерби, чтобы он был способен провеодить сегментацию сигнала по имеющимся данным. Здесь используется следующее предположение: поступающие в текущий момент данные не влияют на сегментацию отдаленных участков сигнала в прошлом. Иными словами, каковы бы не были наблюдения, например, начиная с момента времени 100 и дальше, сегментация первых, скажем, 40 точек сигнала останется без изменений. Это позволяет нам провести окончательную сегментацию первых сорока точек сигнала, не дожидаясь получения всего объема данных, уже в сотый момент времени. По мере поступления новых данных граница окончательной сегментации (граница приятия решения) будет смещаться вправо.

Ваша задача для каждого момента времени определить на какой участок в прошлом новые наблюдения уже влияния не окажут и провести его сегментацию алгоритмом Витерби. При хорошо различимых состояниях задержка сегментации (разница между границей принятия решения и текущим моментом времени) будет незначительной.

Подсказки

Вариантом реализации такого алгоритма является прореживание таблицы функции S(t_{n,j}), содержащей аргмаксы функции Беллмана. Кладем S(t_{n,j})=0, если \not\exist i: S(t_{n+1},i)=j, т.е. если ни одна из оптимальных траекторий не проходит через t_{n,j}. В этом случае значения функции Беллмана и функции S для t_{n,j} интереса не представляют. В какой-то момент l окажется, что все S(t_{l,j})=0,\ \ j\ne j_0. Это и будет означать, что все оптимальные траектории проходят через состояние j_0 в момент времени l. Но тогда мы можем провести сегментацию всего сигнала до момента l включительно и очистить память, удалив массивы со значениями функции Беллмана и функции S от начала до момента времени l - сегментация на этом участке уже не изменится.

--Vetrov 17:43, 30 октября 2009 (MSK)

Спецификация реализуемых функций

Оформление задания

Вариант 3

Формулировка задания

Спецификация реализуемых функций

Оформление задания

Личные инструменты