Участник:Lr2k/Песочница
Материал из MachineLearning.
(→См. также) |
(→См. также) |
||
Строка 52: | Строка 52: | ||
[[Категория:Дисперсионный анализ]] | [[Категория:Дисперсионный анализ]] | ||
- | {{Задание| | + | {{Задание|Lr2k|Vokov|31 декабря 2009}} |
Версия 08:05, 30 декабря 2009
|
Однофакторная модель в рамках дисперсионного анализа используется для исследования влияния одной переменной (фактора) на одну зависимую количественную переменную (отклик).
Данные состоят из нескольких рядов наблюдений (обработок), которые рассматриваются как реализации независимых между собой выборок. Исходная гипотеза говорит об отсутствии различия в обработках, т.е. предполагается, что все наблюдения можно считать одной выборкой из общей совокупности.
Примеры задач
Пример 1: Три различные группы из шести испытуемых получили списки из десяти слов. Первой группе слова предъявлялись с низкой скоростью --- 1 слово в 5 секунд, второй группе со средней скоростью --- 1 слово в 2 секунды, и третьей группе с большой скоростью --- 1 слово в секунду. Необходимо определить, будут ли показатели воспроизведения зависеть от скорости предъявления слов.
Пример 2: Группа из 5 испытуемых была обследована с помощью трех экспериментальных заданий, направленных на изучение интеллектуальной настойчивости (Сидоренко Е. В., 1984). Каждому испытуемому индивидуально предъявлялись последовательно три одинаковые анаграммы: четырехбуквенная, пятибуквенная и шестибуквенная. Можно ли считать, что фактор длины анаграммы влияет на длительность попыток ее решения?
Метод множественных сравнений Шеффе
В качестве параметрического теста для выявления наличия статистически значимых различий между средними для нормально распределенных связных групп используется Метод множественных сравнений Шеффе.
Имеется выборок , объемом каждая, где
Дополнительное предположение
Распределения выборок нормальны, выборки связные.
Нулевая гипотеза
Критерий Шеффе проверяет нулевую гипотезу ,
где , - среднее арифметическое значение в группе с номером .
Описание критерия
Алгоритм проверки критерия состоит из следующих шагов
- Упорядочить выборки по возрастанию средних значений
- Задать
Литература
- Шеффе Г. Дисперсионный анализ. — М., 1980.
- Аренс Х. Лёйтер Ю. Многомерный дисперсионный анализ.
- Лапач С. Н. , Чубенко А. В., Бабич П. Н. Статистика в науке и бизнесе. — Киев: Морион, 2002.
- Лагутин М. Б. Наглядная математическая статистика. В двух томах. — М.: П-центр, 2003.
- Холлендер М., Вульф Д.А. Непараметрические методы статистики.
Ссылки
- Дисперсионный анализ для связанных выборок - Аналитическая статистика.
- Многофакторный дисперсионный анализ - Электронная библиотека.
См. также
Данная статья является непроверенным учебным заданием.
До указанного срока статья не должна редактироваться другими участниками проекта MachineLearning.ru. По его окончании любой участник вправе исправить данную статью по своему усмотрению и удалить данное предупреждение, выводимое с помощью шаблона {{Задание}}. См. также методические указания по использованию Ресурса MachineLearning.ru в учебном процессе. |