< Участник:Lr2k(Различия между версиями)
|
|
(2 промежуточные версии не показаны) |
Строка 1: |
Строка 1: |
- | {{TOCright}}
| |
| | | |
- | Однофакторная модель в рамках [[Дисперсионный анализ|дисперсионного анализа]] используется для исследования влияния одной переменной (фактора) на одну зависимую количественную переменную ([[регрессионный анализ|отклик]]).
| |
- |
| |
- | Данные состоят из нескольких рядов наблюдений (обработок), которые рассматриваются как реализации независимых между собой выборок. Исходная гипотеза <tex>H_0</tex> говорит об отсутствии различия в обработках, т.е. предполагается, что все наблюдения можно считать одной выборкой из общей совокупности.
| |
- |
| |
- | ==Примеры задач==
| |
- |
| |
- | '''Пример 1:''' Три различные группы из шести испытуемых получили списки из десяти слов. Первой группе слова предъявлялись с низкой скоростью — 1 слово в 5 секунд, второй группе со средней скоростью — 1 слово в 2 секунды, и третьей группе с большой скоростью — 1 слово в секунду. Необходимо определить, будут ли показатели воспроизведения зависеть от скорости предъявления слов.
| |
- |
| |
- | ==Критерий Краскела-Уоллиса==
| |
- | В качестве [[Непараметрические статистические тесты|непараметрического теста]] для выявления наличия статистически значимых различий между средними нескольких выборок используется [[Критерий Краскела-Уоллиса|критерий Краскела-Уоллиса]].
| |
- |
| |
- | Пусть заданы <i>k</i> выборок: <tex>x_1^{n_1}=\left\{x_{11},\dots,x_{1n_1}\right\}, \dots, x_k^{n_k}=\left\{x_{k1},\dots,x_{kn_k}\right\}</tex>.
| |
- | Объединённая выборка: <tex>x=x_1^{n_1}\cup x_2^{n_2}\cup \dots \cup x_k^{n_k}</tex>.
| |
- |
| |
- | === Дополнительные предположения ===
| |
- | * обе выборки [[Простая выборка|простые]], объединённая выборка [[Независимая выборка|независима]];
| |
- | * выборки взяты из неизвестных непрерывных распределений <tex>F_1(x),\dots,F_k(x)</tex>.
| |
- |
| |
- | === Нулевая гипотеза ===
| |
- |
| |
- | <tex>H_0:\; F_1(x)=\dots=F_k(x)</tex> при альтернативе <tex>H_1:\; F_1(x)=F_2(x-\Delta_1)=\dots=F_k(x-\Delta_{k-1})</tex>.
| |
- |
| |
- | ==Литература==
| |
- |
| |
- | # ''Шеффе Г.'' Дисперсионный анализ. — М., 1980.
| |
- | # ''Аренс Х.'' ''Лёйтер Ю.'' Многомерный дисперсионный анализ.
| |
- | # ''Лапач С. Н. , Чубенко А. В., Бабич П. Н.'' Статистика в науке и бизнесе. — Киев: Морион, 2002.
| |
- | # ''Лагутин М. Б.'' Наглядная математическая статистика. В двух томах. — М.: П-центр, 2003.
| |
- | # ''Холлендер М., Вульф Д.А.'' Непараметрические методы статистики.
| |
- |
| |
- | == Ссылки ==
| |
- |
| |
- | * [http://www.tspu.tula.ru/res/math/mop/lections/lection_7.htm#_Toc73845987 Дисперсионный анализ для связанных выборок] - Аналитическая статистика.
| |
- | * [http://khomich.narod.ru/metodichka/Dispersionniy/Dispersionniy.htm Дисперсионный анализ].
| |
- | * [http://www.ievbran.ru/Kiril/Library/Book1/content352/content352.htm Однофакторный дисперсионный анализ].
| |
- |
| |
- | ==См. также==
| |
- |
| |
- | * [[Однофакторная параметрическая модель]]
| |
- | * [[Двухфакторная непараметрическая модель]]
| |
- | * [[Дисперсионный анализ]]
| |
- |
| |
- | [[Категория:Прикладная статистика]]
| |
- | [[Категория:Дисперсионный анализ]]
| |
- |
| |
- | {{Задание|Lr2k|Vokov|31 декабря 2009}}
| |