Фундаментальные теоремы машинного обучения/Группа 674 (практика, М.С. Потанин, В.В. Стрижов)
Материал из MachineLearning.
(Различия между версиями)
(→Материалы курса) |
(→Литература) |
||
| Строка 207: | Строка 207: | ||
==Литература== | ==Литература== | ||
| + | # [http://lpcs.math.msu.su/~zolin/ax/pdf/2015_Axiomatic_method_Zolin_Lectures.pdf Золин Е.Е. Аксомаический метод, 2015] | ||
| + | # [http://eqworld.ipmnet.ru/ru/library/books/Klini1957ru.djvu Клини С.К. Введение в метаматематику, 1957] | ||
| + | # [http://www.vixri.com/d/Uspenskij%20V.A.%20_Chto%20takoe%20aksiomaticheskij%20metod.pdf Успенский В.А. Что такое аксиоматический метод?, 2001] (См. также Труды по НЕматематике) | ||
| + | # | ||
Версия 19:00, 27 января 2021
|
Мотивация и план курса
Цель курса — повысить качество студенческих научных работ на кафедре, сделать статьи и дипломные работы более обоснованными, изучить технику и практику формулировок доказательства теорем в области машинного обучения. Результат курса - теоретически обоснованные сообщения дипломных работ бакалавра.
Каждое занятие курса
- Доклад лектора — одна из фундаментальных теорем (40' = 30' + 10' обсуждение)
- Два студенческих доклада (20'=15'+5' обсуждение)
Каждый студент делает два доклада
- С теоремой взятой из литературы, по которой выполняется дипломная работа
- С собственной теоремой, обосновывающей решение, предлагаемое в дипломное работе
Приветствуются!
- Варианты собственных формулировок и доказательств
- Значимые высказывания ведущих исследователей, оформленные в виде теорем (пример изложения Кристофера Бишопа)
План изложения материала
- Введение: основное сообщение теоремы в понятном (не обязательно строгом) изложении
- Вводная часть: определение терминов и сведения, необходимые для изложения (обозначения можно использовать авторские или [ссылка на обозначения Б.А.С.])
- Формулировка и доказательство теоремы в строгом изложении (но можно отходить от авторского варианта, если это нужно для ясности)
- Значимость теоремы: ссылки или обзор методов и приложений, иллюстрирующих теорему
Оформление
- В виде страницы текста, пример [ссылка], шаблон [ссылка]
- Слайды приветствуются, но необязательны
- Очень приветствуются поясняющие рисунки, диаграммы, графики (можно от руки)
Материалы курса
- Проект на GitHub для загрузки докладов Intelligent-Systems-Phystech/FundamentalTheoremsML
- В папку группы 674 загрузить pdf, tex, fig с именем файла
- Surname2021Literature, Surname2021Research,
- Канал Youtube Machine Learning
- Ссылка на сессию Zoom
Оценивание
- Доклад и материалы к нему 0-4 балла (по результатам сравнения работ)
- Не по расписанию делим на два
- Экзамен 2 балла
Расписание докладов
| Докладчик | Литература | Диплом |
|---|---|---|
| Бишук Антон | 17.2 link | 31.3 link |
| Вайсер Кирилл | 17.2 link | 31.3 link |
| Гребенькова Ольга | 24.2 link | 7.4 link |
| Гунаев Руслан | 24.2 link | 7.4 link |
| Жолобов Владимир | 3.3 link | 14.4 link |
| Исламов Рустем | 3.3 link | 14.4 link |
| Панкратов Виктор | 10.3 link | 21.4 link |
| Савельев Николай | 10.3 link | 21.4 link |
| Филатов Андрей | 10.3 link | 21.4 link |
| Филиппова Анастасия | 17.3 link | 28.4 link |
| Харь Александра | 17.3 link | 28.4 link |
| Христолюбов Максим | 24.3 link | 5.5 link |
| Шокоров Вячеслав | 24.3 link | 5.5 link |
Темы лекций
- Теорема Гаусса-Маркова
- Теорема о сингулярном разложении Молер-Форсайт и другие разложения
- Метод главных компонент Рао и разложение Карунена-Лоэва
- Теоремы Колмогорова и Арнольда, теорема об универсальном аппроксиматоре Цыбенко, теорема о глубоких нейросетях
- Теорема о бесплатных обедах в машинном обучении, Волперт
- Метрические пространства: RKHS Аронжайн, теорема Мерсера
- Теорема схем, Холланд
- Теорема о свертке (Фурье, свертка, автокорреляция) с примерами сверточных сетей
- Обратная теорема Фурье, теорема Парсеваля (равномерная и неравномерная сходимость)
- РАС-learning, теорема о том, что сжатие предполагает обучаемость
- Representer theorem, Schölkopf, Herbrich, and Smola
- Вариационная аппроксимация
- Сходимость про вероятности при выборе моделей
- Теорема о связи распределений в экспонентном семействе
- Теорема о многоруких бандитах
- Копулы и теорема Скляра
Расписание лекций
| Дата | Тема | Лектор | Ссылки |
|---|---|---|---|
| 10 февраля | Вводное занятие | Стрижов, Потанин | |
| 17 февраля | Теоремы Колмогорова и Арнольда, теорема об универсальном аппроксиматоре Цыбенко, теорема о глубоких нейросетях | Марк Потанин | |
| 24 февраля | Теорема о сингулярном разложении Молер-Форсайт, МГК, и другие разложения | ||
| 4 марта | Берштейн - фон Мизес | Андрей Грабовой | |
| 10 марта | РАС обучаемость, теорема о том, что сжатие предполагает обучаемость | Тамаз Гадаев | |
| 17 марта | Теорема о бесплатных обедах в машинном обучении, Волперт | Радослав Нейчев | |
| 24 марта | Сходимость про вероятности при выборе моделей | Марк Потанин | |
| 31 марта | Теорема схем, Холланд | Радослав Нейчев | |
| 7 апреля | Метрические пространства: RKHS Аронжайн, теорема Мерсера | Алексей Гончаров | |
| 14 апреля | Теорема о свертке (Фурье, свертка, автокорреляция) с примерами сверточных сетей | Филипп Никитин | |
| 21 апреля | Representer theorem, Schölkopf, Herbrich, and Smola | ||
| 28 апреля | Обратная теорема Фурье, теорема Парсеваля (равномерная и неравномерная сходимость) | Филипп Никитин | |
| 5 мая | Вариационная аппроксимация, теорема о байесовском выборе моделей | Олег Бахтеев | |
| 12 мая | Разбор и обсуждение письменных работ: теоремы их доказательства (входящие в диплом) | Потанин, Стрижов | |
| 26 мая | Экзамен: схемы доказательства различных теорем (тест на время, как в гос по физике, и обсуждение) | Потанин, Адуенко, Бахтеев |
Литература
- Золин Е.Е. Аксомаический метод, 2015
- Клини С.К. Введение в метаматематику, 1957
- Успенский В.А. Что такое аксиоматический метод?, 2001 (См. также Труды по НЕматематике)

