Участник:Strijov/Drafts
Материал из MachineLearning.
(Различия между версиями)
(→Theme 1: PDE) |
|||
Строка 36: | Строка 36: | ||
==Theme 1: PDE== | ==Theme 1: PDE== | ||
+ | |||
+ | |||
+ | (after RBF) | ||
+ | ==Theme 1: High order splines== | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | ==Theme 1: Topological data analysis== | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | ==Theme 1: Homology versus homotopy== | ||
+ | [https://en.wikipedia.org/wiki/Homology_(mathematics) W: Homology] | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | =Fundamental theorems= | ||
+ | [https://en.wikipedia.org/wiki/Inverse_function_theorem W: Inverse function theorem and Jacobian |
Версия 17:28, 1 августа 2021
|
- Geometric deep learning
- Functional data analysis
- Applied mathematics for machine learning
Syllabus and goals
Theme 1:
Message
Basics
Application
Code
https://papers.nips.cc/paper/2018/file/69386f6bb1dfed68692a24c8686939b9-Paper.pdf
Theme 1: ODE and flows
- Neural Ordinary Differential Equations (source paper and code)
- W: Flow-based generative model
- Flows at deepgenerativemodels.github.io
- Знакомство с Neural ODE на хабре
Goes to BME
Theme 1: PDE
(after RBF)
Theme 1: High order splines
Theme 1: Topological data analysis
Theme 1: Homology versus homotopy
Fundamental theorems
[https://en.wikipedia.org/wiki/Inverse_function_theorem W: Inverse function theorem and Jacobian