Участник:Василий Ломакин/Коэффициент корреляции Кенделла

Материал из MachineLearning.

(Различия между версиями)
Перейти к: навигация, поиск
Строка 1: Строка 1:
{{TOCright}}
{{TOCright}}
 +
 +
<ref>Лагутин М. Б. Наглядная математическая статистика. — 223 с.</ref>
 +
<ref>Кобзарь А. И. Прикладная математическая статистика. — 625 с.</ref>
TODO:
TODO:
# Орфография, пунктуация
# Орфография, пунктуация
# Рисунки
# Рисунки
-
# Определение корреляции
 
-
# Ссылка на Лапача
 
-
<ref>Лагутин М. Б. Наглядная математическая статистика. — 223 с.</ref>
 
'''Коэффициент корреляции Кенделла''' — мера линейной связи между случайными величинами. Коэффициент является [[Ранговая корреляция|ранговым]], то есть для оценки силы связи используются не численные значения, а соответствующие им ранги. Коэффициент инвариантен по отношению к любому монотонному преобразованию шкалы измерения.
'''Коэффициент корреляции Кенделла''' — мера линейной связи между случайными величинами. Коэффициент является [[Ранговая корреляция|ранговым]], то есть для оценки силы связи используются не численные значения, а соответствующие им ранги. Коэффициент инвариантен по отношению к любому монотонному преобразованию шкалы измерения.
Строка 15: Строка 15:
'''Коэффициент корреляции Кенделла''' вычисляется по формуле
'''Коэффициент корреляции Кенделла''' вычисляется по формуле
-
:: <tex>\tau=1-\frac{4}{n(n-1)}R</tex>,
+
::<tex>\tau=1-\frac{4}{n(n-1)}R</tex>, где <tex>R = \sum_{i=1}^{n-1}\sum_{j=i+1}^n\left[ \left[ x_i\ <\ x_j \right] \neq \left[ y_i\ <\ y_j \right] \right]</tex> — количество инверсий, образованных величинами <tex>y_i</tex>, расположенными в порядке возрастания соответствующих <tex>x_i</tex>.
-
:: где <tex>R = \sum_{i=1}^{n-1}\sum_{j=i+1}^n\left[ \left[ x_i<x_j \right] \neq \left[ y_i < y_j \right] \right]</tex> — количество инверсий, образованных величинами <tex>y_i</tex>, расположенными в порядке возрастания соответствующих <tex>x_i</tex>.
+
Коэффициент <tex>\tau</tex> принимает значения из отрезка <tex>[-1;\;1]</tex>. Равенство <tex>\tau=1</tex> указывает на строгую прямую линейную зависимость, <tex>\tau=-1</tex> на обратную.
Коэффициент <tex>\tau</tex> принимает значения из отрезка <tex>[-1;\;1]</tex>. Равенство <tex>\tau=1</tex> указывает на строгую прямую линейную зависимость, <tex>\tau=-1</tex> на обратную.
Строка 23: Строка 22:
Будем говорить, что пары <tex>(x_i,\; y_i)</tex> и <tex>(x_j,\; y_j)</tex> согласованы, если <tex>x_i\ <\ y_j</tex> и <tex>x_i\ <\ y_j</tex> или <tex>x_i\ >\ y_j</tex> и <tex>x_i\ >\ y_j</tex>, то есть <tex>sign(x_j-x_i)sign(y_j-y_i)=1</tex>. Пусть <tex>S</tex> - число согласованных пар, <tex>R</tex> - число несогласованных пар. Тогда, в предположении, что среди <tex>x_i</tex> и среди <tex>y_i</tex> нет совпадений, превышение согласованности над несогласованностью есть:
Будем говорить, что пары <tex>(x_i,\; y_i)</tex> и <tex>(x_j,\; y_j)</tex> согласованы, если <tex>x_i\ <\ y_j</tex> и <tex>x_i\ <\ y_j</tex> или <tex>x_i\ >\ y_j</tex> и <tex>x_i\ >\ y_j</tex>, то есть <tex>sign(x_j-x_i)sign(y_j-y_i)=1</tex>. Пусть <tex>S</tex> - число согласованных пар, <tex>R</tex> - число несогласованных пар. Тогда, в предположении, что среди <tex>x_i</tex> и среди <tex>y_i</tex> нет совпадений, превышение согласованности над несогласованностью есть:
-
<tex>T = S - R = \sum_{i < j}sign(x_j-x_i)sign(y_j-y_i)</tex>.
 
-
Для измерения степени согласия Кенделл предложил коэффициент
+
::<tex>T = S - R = \sum_{i < j}sign(x_j-x_i)sign(y_j-y_i)</tex>.
-
<tex>
+
 
-
\tau = \frac{T}{max{T}}</tex>
+
Для измерения степени согласия Кенделл предложил следующий коэффициент:
 +
 
 +
::<tex>\tau = \frac{T}{max{T}} = \frac{2T}{n(n-1)} = \frac{2(S-R)}{n(n-1)} = 1 - \frac{4}{n(n-1)}R</tex>.
 +
 
 +
Таким образом, коэффициент <tex>\tau</tex> (линейно связанный с <tex>R</tex>) можно считать ''мерой неупорядоченности'' второй последовательности относительно первой.<ref>Лагутин М. Б. Наглядная математическая статистика. — 345 с.</ref>
==Статистическая проверка наличия корреляции==
==Статистическая проверка наличия корреляции==
Строка 61: Строка 63:
Коэффициент корреляции Кенделла <tex>\tau</tex> и [[коэффициент корреляции Спирмена]] <tex>\rho</tex> выражаются через ранги <tex>T_i,\; i=1,\cdots,n</tex> следующим образом:
Коэффициент корреляции Кенделла <tex>\tau</tex> и [[коэффициент корреляции Спирмена]] <tex>\rho</tex> выражаются через ранги <tex>T_i,\; i=1,\cdots,n</tex> следующим образом:
-
::<tex>\rho=1-\frac{12}{n^3-n}\sum_{i<j}{(j-i)[T_i>T_j]};</tex>
+
::<tex>\rho=1-\frac{12}{n^3-n}\sum_{i<j}{(j-i)[T_i\ >\ T_j]};</tex>
-
::<tex>\tau=1-\frac{4}{n^2-1}\sum_{i<j}[T_i>T_j];</tex>
+
::<tex>\tau=1-\frac{4}{n^2-1}\sum_{i<j}[T_i\ >\ T_j];</tex>
'''Утверждение.'''<ref>Лагутин М. Б. Наглядная математическая статистика. — 345-346 с.</ref> Если выборки <tex>x</tex> и <tex>y</tex> не коррелируют (выполняется гипотеза <tex>H_0</tex>), то коэффициент корреляции между величинами <tex>\rho</tex> и <tex>\tau</tex> можно вычислить по формуле:
'''Утверждение.'''<ref>Лагутин М. Б. Наглядная математическая статистика. — 345-346 с.</ref> Если выборки <tex>x</tex> и <tex>y</tex> не коррелируют (выполняется гипотеза <tex>H_0</tex>), то коэффициент корреляции между величинами <tex>\rho</tex> и <tex>\tau</tex> можно вычислить по формуле:
Строка 74: Строка 76:
== Литература ==
== Литература ==
-
# ''Кобзарь А. И.'' Прикладная математическая статистика. — М.:&nbsp;Физматлит, 2006. — 816&nbsp;с.
+
# ''Кобзарь А. И.'' Прикладная математическая статистика. — М.:&nbsp;Физматлит, 2006. — 624-626&nbsp;с.
-
# ''Лагутин М. Б.'' Наглядная математическая статистика. В двух томах. — М.: П-центр, 2003
+
# ''Лагутин М. Б.'' Наглядная математическая статистика. В двух томах. — М.: П-центр, 2003. — 345-346&nbsp;с.
 +
# ''Лапач С. Н., Чубенко А. В., Бабич П. Н.'' Статистика в науке и бизнесе. — Киев: Морион, 2002. — 187-189 с.
==Ссылки==
==Ссылки==

Версия 11:20, 4 января 2010

Содержание

[1] [2]

TODO:

  1. Орфография, пунктуация
  2. Рисунки

Коэффициент корреляции Кенделла — мера линейной связи между случайными величинами. Коэффициент является ранговым, то есть для оценки силы связи используются не численные значения, а соответствующие им ранги. Коэффициент инвариантен по отношению к любому монотонному преобразованию шкалы измерения.

Определение

Заданы две выборки x = (x_1,\ldots,x_n),\; y = (y_1,\ldots,y_n).

Коэффициент корреляции Кенделла вычисляется по формуле

\tau=1-\frac{4}{n(n-1)}R, где R = \sum_{i=1}^{n-1}\sum_{j=i+1}^n\left[ \left[ x_i\ <\ x_j \right] \neq \left[ y_i\ <\ y_j \right] \right] — количество инверсий, образованных величинами y_i, расположенными в порядке возрастания соответствующих x_i.

Коэффициент \tau принимает значения из отрезка [-1;\;1]. Равенство \tau=1 указывает на строгую прямую линейную зависимость, \tau=-1 на обратную.

Вывод критерия Кенделла

Будем говорить, что пары (x_i,\; y_i) и (x_j,\; y_j) согласованы, если x_i\ <\ y_j и x_i\ <\ y_j или x_i\ >\ y_j и x_i\ >\ y_j, то есть sign(x_j-x_i)sign(y_j-y_i)=1. Пусть S - число согласованных пар, R - число несогласованных пар. Тогда, в предположении, что среди x_i и среди y_i нет совпадений, превышение согласованности над несогласованностью есть:

T = S - R = \sum_{i < j}sign(x_j-x_i)sign(y_j-y_i).

Для измерения степени согласия Кенделл предложил следующий коэффициент:

\tau = \frac{T}{max{T}} = \frac{2T}{n(n-1)} = \frac{2(S-R)}{n(n-1)} = 1 - \frac{4}{n(n-1)}R.

Таким образом, коэффициент \tau (линейно связанный с R) можно считать мерой неупорядоченности второй последовательности относительно первой.[3]

Статистическая проверка наличия корреляции

Нулевая гипотеза H_0: Выборки x и y не коррелируют.

Статистика критерия:

\frac{\tau}{\sqrt{D_{\tau}}},

где D_{\tau}=\frac{2(2n+5)}{9n(n-1)}.

При n\geq 10 статистику критерия можно приблизить стандартным нормальным распределением: \frac{\tau}{\sqrt{D_{\tau}}}\sim N(0,1).

Критерий (при уровне значимости \alpha):

  • против альтернативы H_1: наличие корреляции
если |\tau| > \tau_{\alpha}=u_{\alpha}\cdot\sqrt{D_{\tau_{xy}}} , где u_{\alpha}\alpha-квантиль стандартного нормального распределения.

Связь коэффициентов корреляции Кенделла и Пирсона

В случае выборок из нормального распределения коэффициент корреляции Кенделла \tau может быть использован для оценки коэффициента корреляции Пирсона r по формуле:

r=sin{\frac{\pi\tau}{2}}.[4]

Связь коэффициентов корреляции Кенделла и Спирмена

Выборкам x и y соответствуют последовательности рангов:

R_x=(R_{x_1},\ldots,R_{x_n}), где R_{x_i} — ранг i-го объекта в вариационном ряду выборки x;
R_y=(R_{y_1},\ldots,R_{y_n}), где R_{y_i} — ранг i-го объекта в вариационном ряду выборки y.

Проведем операцию упорядочевания рангов.

Расположим ряд значений x_i в порядке возрастания величины: x_1\leq x_2\leq\cdots\leq x_n. Тогда последовательность рангов упорядоченной выборки x будет представлять собой последовательность натуральных чисел 1,2,\cdots,n. Значения y, соответствующие значениям x, образуют в этом случае некоторую последовательность рангов T=(T_1,\cdots,T_n):

(R_{x_i},\;R_{y_i})\rightarrow^{sort} (i,\;T_i),\; i=1,\cdots,n.

Коэффициент корреляции Кенделла \tau и коэффициент корреляции Спирмена \rho выражаются через ранги T_i,\; i=1,\cdots,n следующим образом:

\rho=1-\frac{12}{n^3-n}\sum_{i<j}{(j-i)[T_i\ >\ T_j]};
\tau=1-\frac{4}{n^2-1}\sum_{i<j}[T_i\ >\ T_j];

Утверждение.[5] Если выборки x и y не коррелируют (выполняется гипотеза H_0), то коэффициент корреляции между величинами \rho и \tau можно вычислить по формуле:

corr(\rho,\;\tau)=\frac{2n+2}{\sqrt{4n^2+10n}}.

История

Критерий был введён в 1938 году известным британским статистиком Морисом Джорджем Кенделлом.

Примечания

  1. Лагутин М. Б. Наглядная математическая статистика. — 223 с.
  2. Кобзарь А. И. Прикладная математическая статистика. — 625 с.
  3. Лагутин М. Б. Наглядная математическая статистика. — 345 с.
  4. Кобзарь А. И. Прикладная математическая статистика. — 625 с.
  5. Лагутин М. Б. Наглядная математическая статистика. — 345-346 с.

Литература

  1. Кобзарь А. И. Прикладная математическая статистика. — М.: Физматлит, 2006. — 624-626 с.
  2. Лагутин М. Б. Наглядная математическая статистика. В двух томах. — М.: П-центр, 2003. — 345-346 с.
  3. Лапач С. Н., Чубенко А. В., Бабич П. Н. Статистика в науке и бизнесе. — Киев: Морион, 2002. — 187-189 с.

Ссылки

Личные инструменты