Вероятностные тематические модели (курс лекций, К.В.Воронцов)

Материал из MachineLearning.

(Различия между версиями)
Перейти к: навигация, поиск
(оформление)
Текущая версия (21:10, 24 октября 2024) (править) (отменить)
 
(283 промежуточные версии не показаны)
Строка 1: Строка 1:
{{TOCright}}
{{TOCright}}
-
Спецкурс читается студентам 2—5 курсов на кафедре «[[Математические методы прогнозирования (кафедра ВМиК МГУ)|Математические методы прогнозирования]]» [[ВМиК]] [[МГУ]] с 2013 года.
+
Спецкурс читается студентам 2—5 курсов на кафедре «[[Математические методы прогнозирования (кафедра ВМиК МГУ)|Математические методы прогнозирования]]» [[ВМиК]] [[МГУ]] с 2013 года и студентам 6 курса на кафедре «[[Интеллектуальные системы (кафедра МФТИ)|Интеллектуальные системы]]» [[ФУПМ]] [[МФТИ]] с 2019 года.
-
От студентов требуются знания курсов линейной алгебры, математического анализа, теории вероятностей. Знание математической статистики, методов оптимизации и какого-либо языка программирования желательно, но не обязательно.
+
В спецкурсе изучается вероятностное [[тематическое моделирование]] (topic modeling) коллекций текстовых документов. Тематическая модель определяет, какие темы содержатся в большой текстовой коллекции, и к каким темам относится каждый документ. Тематические модели позволяют искать тексты по смыслу, а не по ключевым словам, и создавать информационно-поисковые системы нового поколения, основанные на парадигме семантического разведочного поиска (exploratory search). Рассматриваются тематические модели для классификации, категоризации, сегментации, суммаризации текстов естественного языка, а также для рекомендательных систем, анализа банковских транзакционных данных, анализа биомедицинских сигналов. В спецкурсе развивается многокритериальный подход к построению моделей с заданными свойствами — [[аддитивная регуляризация тематических моделей]] (АРТМ). Он основан на регуляризации некорректно поставленных задач стохастического матричного разложения. Особое внимание уделяется методам лингвистической регуляризации для моделирования связности текста. Предполагается проведение студентами численных экспериментов на модельных и реальных данных с помощью библиотеки тематического моделирования [[BigARTM]].
-
Условием сдачи спецкурса является выполнение обязательных практических заданий.
+
От студентов требуются знания курсов линейной алгебры, математического анализа, теории вероятностей. Знание математической статистики, методов оптимизации, машинного обучения, языков программирования Python и С++ желательно, но не обязательно.
-
== Программа курса ==
+
Краткая ссылка на эту страницу: [http://bit.ly/2EGWcjA bit.ly/2EGWcjA].
-
=== Задачи анализа текстов. Вероятностные модели коллекций текстов ===
+
'''Основной материал:'''
 +
* ''Воронцов К. В.'' [[Media:voron17survey-artm.pdf|Вероятностное тематическое моделирование: теория регуляризации ARTM и библиотека с открытым кодом BigARTM]]. {{важно|— обновление 26.06.2023}}.
 +
* [https://www.youtube.com/playlist?list=PLk4h7dmY2eYE_JjvexGUS5MSozoxDFovp Видеозаписи, 2023 осень (МФТИ)].
-
'''Задачи классификации текстов.'''
+
= Программа курса =
-
* Коллекция текстовых документов. Векторное представление документа.
+
-
* Постановка задачи классификации текстов. Объекты, признаки, классы, обучающая выборка. Распознавание текстов заданной тематики. Анализ тональности. Частоты слов (терминов) как признаки. Линейный классификатор.
+
-
* Задача распознавание жанра текстов. Распознавание научных текстов. Примеры признаков.
+
-
* Задача категоризации текстов, сведение к последовательности задач классификации.
+
-
'''Задачи предварительной обработки текстов.'''
+
== Задача тематического моделирования ==
-
* Очистка: удаление номеров страниц, переносов, опечаток, нетекстовой информация, оглавлений, таблиц, рисунков.
+
Презентация: [[Media:Voron24ptm-intro.pdf|(PDF, 1,4 МБ)]] {{важно|— обновление 19.09.2024}}.
-
* Лемматизация и стемминг.
+
[https://www.youtube.com/watch?v=k0XHeu4MeBo&list=PLk4h7dmY2eYE_JjvexGUS5MSozoxDFovp Видеозапись]
-
* Удаление стоп-слов. Удаление редких слов.
+
-
'''Задачи информационного поиска.'''
+
'''Цели и задачи тематического моделирования.'''
-
* Задача поиска документов по запросу. Инвертированный индекс. Косинусная мера сходства.
+
* Понятие «темы», цели и задачи [[тематическое моделирование|тематического моделирования]].
-
* Критерий текстовой релевантности TF-IDF. Вероятностная модель и вывод формулы TF-IDF.
+
* Вероятностная модель порождения текста.
-
* Задача ранжирования. Примеры признаков. Формирование асессорских обучающих выборок.
+
* [[EM-алгоритм]] и его элементарная интерпретация. Формула Байеса и частотные оценки условных вероятностей.
 +
* [[Метод наибольшего правдоподобия|Принцип максимума правдоподобия]].
-
'''Униграммная модель документов и коллекции.'''
+
'''Аддитивная регуляризация тематических моделей.'''
-
* Вероятностное пространство. Гипотезы «мешка слов» и «мешка документов». Текст как простая выборка, порождаемая вероятностным распределением. Векторное представление документа как эмпирическое распределение.
+
* Понятие некорректно поставленной задачи по Адамару. Регуляризация.
-
* Понятие параметрической порождающей модели. Принцип максимума правдоподобия.
+
* Лемма о максимизации на единичных симплексах. [[Условия Каруша–Куна–Таккера]].
-
* Униграммная модель документов и коллекции. Аналитическое решение задачи о стационарной точке функции Лагранжа. Частотные оценки условных вероятностей.
+
* Теорема о необходимом условии максимума регуляризованного правдоподобия для ARTM.
 +
* Классические тематические модели [[Вероятностный латентный семантический анализ|PLSA]] и [[Латентное размещение Дирихле|LDA]] как частные случаи ARTM.
-
'''Литература:''' [Маннинг, 2011].
+
'''Практика тематического моделирования.'''
 +
* Проект с открытым кодом BigARTM.
 +
* Этапы решения практических задач.
 +
* Методы предварительной обработки текста.
 +
* Датасеты и практические задания по курсу.
-
=== Вероятностный латентный семантический анализ ===
+
== Онлайновый ЕМ-алгоритм и аддитивная регуляризация ==
-
* ''Напоминания.'' Коллекция текстовых документов. Векторное представление документа. Задачи информационного поиска и классификации текстов.
+
Презентация: [[Media:Voron24ptm-regular.pdf|(PDF, 1,3 МБ)]] {{важно|— обновление 03.10.2024}}.
 +
[https://www.youtube.com/live/wq7MlvWph3s?si=38czCY8IbWNYSUVw Видеозапись 2022 г.] Дополнение:
 +
[https://youtu.be/LctW1J93lmw?list=PLk4h7dmY2eYE_JjvexGUS5MSozoxDFovp Видеозапись 2023 г.]
-
'''Мотивации вероятностного тематического моделирования
+
'''Часто используемые регуляризаторы.'''
-
* Идея перехода от вектора (терминов) к вектору тем.
+
* Сглаживание и разреживание.
-
* Цели тематического моделирования: поиск научной информации, агрегирование и анализ новостных потоков, формирование сжатых признаковых описаний документов для классификации и категоризации текстовых документов, обход проблем синонимии и омонимии.
+
* Частичное обучение.
 +
* Декоррелирование тем.
 +
* Разреживание для отбора тем.
-
'''Задача тематического моделирования.'''
+
'''Онлайновый ЕМ-алгоритм.'''
-
* Вероятностное пространство. Тема как латентная (скрытая) переменная. Представление темы дискретным распределением на множестве слов.
+
-
* Модель смеси униграмм. Недостаток: каждый документ принадлежит только одной теме.
+
-
* Представление документа дискретным распределением на множестве тем. Гипотеза условной независимости. Порождающая модель документа как вероятностной смеси тем.
+
-
* Постановка обратной задачи восстановления параметров модели по данным.
+
-
 
+
-
'''Вероятностный латентный семантический анализ (PLSA).'''
+
-
* Частотные оценки условных вероятностей терминов тем и тем документов. Формула Байеса для апостериорной вероятности темы. Элементарное обоснование ЕМ-алгоритма.
+
-
* Принцип максимума правдоподобия, аналитическое решение задачи о стационарной точке функции Лагранжа, формулы M-шага.
+
* Рациональный ЕМ-алгоритм (встраивание Е-шага внутрь М-шага).
* Рациональный ЕМ-алгоритм (встраивание Е-шага внутрь М-шага).
 +
* Оффлайновый регуляризованный EM-алгоритм.
 +
* Улучшение сходимости несмещёнными оценками.
 +
* Подбор коэффициентов регуляризации.
 +
* Относительные коэффициенты регуляризации.
 +
* Библиотеки BigARTM и TopicNet.
-
'''Проведение экспериментов на модельных данных.'''
+
'''Эксперименты с регуляризацией.'''
-
* Процесс порождения терминов в документе. Генератор модельных (синтетических) данных. Генерация случайной величины из заданного дискретного распределения.
+
* Производительность BigARTM
-
* Оценивание точности восстановления модельных данных. Расстояние между дискретными распределениями. Проблема перестановки тем, венгерский алгоритм.
+
* Оценивание качества: перплексия, когерентность, лексическое ядро
-
* Проблема неединственности и неустойчивости матричного разложения. Экспериментальное оценивание устойчивости решения.
+
* Регуляризаторы сглаживания, разреживания, декоррелирования и отбора тем.
 +
* Комбинирование регуляризаторов, эмпирические рекомендации.
-
'''Задание 1.1'''
+
== Тематический информационный поиск ==
-
Обязательные пункты: 1–3 и любой из последующих.
+
Презентация: [[Media:Voron24ptm-exp.pdf|(PDF, 4,8 МБ)]] {{важно|— обновление 10.10.2024}}.
-
# Реализовать генератор модельных данных. Реализовать вычисление эмпирических распределений терминов тем и тем документов.
+
[https://youtu.be/GzjQHdWYYBI?list=PLk4h7dmY2eYE_JjvexGUS5MSozoxDFovp Видеозапись]
-
# Реализовать оценку точности восстановления с учётом перестановки тем. Вычислить оценку точности для исходных модельных распределений.
+
-
# Реализовать рациональный ЕМ-алгоритм.
+
-
# Исследовать зависимости точности модели и точности восстановления от числа итераций и от числа тем в модели (при фиксированном числе тем в исходных данных). Что происходит, когда тем больше, чем нужно? Меньше, чем нужно?
+
-
# Исследовать влияние случайного начального приближения на точность модели и точность восстановления. Построить для них эмпирические распределения и доверительные интервалы. Можно ли утверждать, что EM-алгоритм всегда сходится к одному и тому же решению?
+
-
# Исследовать, когда проблема неустойчивости возникает, когда не возникает.
+
-
'''Литература:''' [Hofmann, 1999].
+
'''Мультимодальные тематические модели.'''
 +
* Примеры модальностей.
 +
* Мультимодальный ARTM и регуляризованный ЕМ-алгоритм.
-
===Модификации алгоритма обучения модели PLSA===
+
'''Иерархические тематические модели.'''
 +
* Иерархии тем. Послойное построение иерархии.
 +
* Регуляризаторы для разделения тем на подтемы.
 +
* Псевдодокументы родительских тем.
 +
* Модальность родительских тем.
-
* ''Напоминания.'' Задача тематического моделирования коллекции текстовых документов. Модель PLSA, формулы Е-шага и М-шага.
+
'''Эксперименты с тематическим поиском.'''
 +
* Методика измерения качества поиска.
 +
* Тематическая модель для документного поиска.
 +
* Оптимизация гиперпараметров.
-
'''Обобщённый ЕМ-алгоритм (GEM).'''
+
'''Проект «Мастерская знаний»'''
-
* Проблема медленной сходимости EM-алгоритма на больших коллекциях. Проблема хранения трёхмерных матриц.
+
* Поисково-рекомендательная система SciSearch.ru
-
* Эвристика частых обновлений параметров.
+
* Векторный поиск для формирования тематических подборок
-
* Эвристика замены средних экспоненциальным сглаживанием.
+
* Требования к тематическим моделям для научного информационного поиска
-
'''Стохастический ЕМ-алгоритм (SEM).'''
+
== Оценивание качества тематических моделей ==
-
* Гипотеза разреженности апоcтериорного распределения тем p(t|d,w).
+
Презентация: [[Media:Voron24ptm-quality.pdf|(PDF, 1,6 МБ)]] {{важно|— обновление 17.10.2024}}.
-
* Эвристика замены апостериорного распределения его несмещённой оценкой.
+
[https://youtu.be/udJ3qsMkwJc?list=PLk4h7dmY2eYE_JjvexGUS5MSozoxDFovp Видеозапись]
-
* Алгоритм сэмплирования Гиббса.
+
-
* Эксперименты по подбору оптимального числа сэмплирований.
+
-
'''Онлайновый ЕМ-алгоритм (OEM).'''
+
'''Измерение качества тематических моделей.'''
-
* Проблема больших данных.
+
* Правдоподобие и перплексия.
-
* Эвристика разделения М-шага.
+
* Интерпретируемость и когерентность. Внутритекстовая когерентность.
-
* Эвристика разделения коллекции на пачки документов.
+
* Разреженность и различность.
-
* Добавление новых документов (folding-in).
+
-
'''Способы формирования начальных приближений.'''
+
'''Проверка гипотезы условной независимости.'''
-
* Случайная инициализация.
+
* Статистики на основе KL-дивергенции и их обобщения.
-
* Инициализация по документам.
+
* Регуляризатор семантической однородности.
 +
* Применение статистических тестов условной независимости.
-
'''Частичное обучение (Semi-supervised EM).'''
+
'''Проблема определения числа тем.'''
-
* Виды частично размеченных данных: привязка документа к темам, привязка термина к темам, нерелевантность, переранжирование списков терминов тем и тем документов, виртуальные документы.
+
* Разреживающий регуляризатор для отбора тем.
-
* Использование частично размеченных данных для инициализации.
+
* Эксперименты на синтетических и реальных данных.
-
* Использование частично размеченных данных в качестве поправок на М-шаге ЕМ-алгоритма.
+
* Сравнение с байесовской моделью HDP (Hierarchical Dirichlet Process).
 +
* Эффект отбрасывания малых, дублирующих и линейно зависимых тем.
-
'''Задание 1.2'''
+
'''Проблема тематической несбалансированности в данных'''
-
Обязательные пункты: 1 и любой из последующих.
+
* Проблема малых тем и тем-дубликатов
-
# Реализовать онлайновый алгоритм OEM.
+
* Тематическая несбалансированность как основная причина неинтерпретируемости тем
-
# Исследовать влияние размера первой пачки и последующих пачек на качество модели.
+
* Эксперименты с регуляризаторами отбора тем и декоррелирования
-
# Исследовать влияние выбора числа итераций на внутреннем и внешнем циклах алгоритма OEM на качество и скорость построения модели.
+
* Регуляризатор семантической однородности
-
# Исследовать возможность улучшения качество модели с помощью второго прохода по коллекции (без инициализации p(w|t)).
+
-
# Исследовать влияние частичной разметки на точность модели и точность восстановления. Проверить гипотезу, что небольшой доли правильно размеченных документов уже достаточно для существенного улучшения точности и устойчивости модели.
+
-
'''Литература:''' [Hoffman, 2010].
+
== BigARTM и базовые инструменты ==
 +
''Мурат Апишев''.
 +
Презентация: [[Media:Base_instruments.zip‎|(zip, 0,6 МБ)]] {{важно|— обновление 17.02.2017}}.
 +
[https://youtu.be/AIN00vWOJGw Видеозапись]
-
===Разреживание и сглаживание===
+
'''Предварительная обработка текстов'''
 +
* Парсинг «сырых» данных.
 +
* Токенизация, стемминг и лемматизация.
 +
* Выделение энграмм.
 +
* Законы Ципфа и Хипса. Фильтрация словаря коллекции. Удаление стоп-слов.
-
'''Разреживание'''
+
'''Библиотека BigARTM'''
-
* Эмпирические законы Ципфа, Ципфа-Мандельброта, Хипса.
+
* Методологические рекоммендации по проведению экспериментов.
-
* Гипотеза разреженности распределений терминов тем и тем документов.
+
* Установка [[BigARTM]].
-
* Принудительное разреживание в ЕМ-алгоритме. Оценка значимости (salience) параметров, метод [[OBD|Optimal Brain Damage]].
+
* Формат и импорт входных данных.
-
* Выделение нетематических терминов.
+
* Обучение простой модели (без регуляризации): создание, инициализация, настройка и оценивание модели.
-
* Генерация реалистичных модельных данных.
+
* Инструмент визуализации тематических моделей VisARTM. Основные возможности, демонстрация работы.
-
* Связь разреженности и единственности неотрицательного матричного разложения.
+
-
'''Сглаживание'''
+
'''Дополнительный материал:'''
-
* Модель латентного размещения Дирихле LDA.
+
* Презентация: [[Media:VoronApishev17ptm5.pdf|(PDF, 1,5 МБ)]] {{важно|— обновление 17.03.2017}}.
-
* Свойства распределения Дирихле, сопряжённость с мультиномиальным распределением.
+
* [https://www.youtube.com/watch?v=2LEQuLRxaIY&t=1s '''Видео'''] {{важно|— обновление 22.03.2017}}.
-
* Байесовский вывод. Сглаженные частотные оценки условных вероятностей.
+
* Воркшоп по BigARTM на DataFest'4. [https://www.youtube.com/watch?v=oQcHEm2-7PM '''Видео'''].
-
* Максимизация обоснованности модели. Численные методы оптимизации гиперпараметров.
+
-
* Сравнение LDA и PLSA. Экспериментальные факты: LDA скорее улучшает оценки редких слов, чем снижает переобучение.
+
-
* Дилемма разреживания и сглаживания.
+
-
'''Задание 1.3'''
+
== Теория ЕМ-алгоритма ==
-
Обязательные пункты: 1 и любой из остальных.
+
Презентация: [[Media:Voron24ptm-emlda.pdf|(PDF, 2,0 МБ)]] {{важно|— обновление 25.10.2024}}.
-
# Реализовать разреживание в онлайновом алгоритме OEM.
+
[https://youtu.be/svQTYv0X2cs?list=PLk4h7dmY2eYE_JjvexGUS5MSozoxDFovp Видеозапись]
-
# Исследовать зависимость точности модели и точности восстановления от степени разреженности исходных модельных данных.
+
-
# Исследовать влияние разреживания на точность модели и точность восстановления. Проверить гипотезу, что если исходные данные разрежены, то разреживание существенно улучшает точность восстановления и слабо влияет на точность модели.
+
-
# Исследовать влияние сглаживания на точность модели и точность восстановления.
+
-
'''Литература:''' [Blei, 2003].
+
'''Классические модели PLSA, LDA.'''
 +
* Модель PLSA.
 +
* Модель LDA. Распределение Дирихле и его свойства.
 +
* Максимизация апостериорной вероятности для модели LDA.
-
===Методы оценивания качества вероятностных тематических моделей===
+
'''Общий EM-алгоритм.'''
-
'''Реальные данные.'''
+
* EM-алгоритм для максимизации неполного правдоподобия.
-
* Текстовые коллекции, библиотеки алгоритмов, источники информации.
+
* Регуляризованный EM-алгоритм. Сходимость в слабом смысле.
-
* Внутренние и внешние критерии качества.
+
* Альтернативный вывод формул ARTM.
-
* Дополнительные данные для построения внешних критериев качества.
+
-
'''Перплексия.'''
+
'''Эксперименты с моделями PLSA, LDA.'''
-
* Определение и интерпретация перплекcии.
+
* Проблема неустойчивости (на синтетических данных).
-
* Перплексия контрольной коллекции. Проблема новых слов в контрольной коллекции.
+
* Проблема неустойчивости (на реальных данных).
 +
* Проблема переобучения и робастные модели.
-
'''Статистические тесты условной независимости.'''
+
== Байесовское обучение модели LDA ==
-
* Методология проверки статистических гипотез. Критерий согласия хи-квадрат Пирсона. Матрица кросс-табуляции «термины–документы» для заданной темы.
+
Презентация: [[Media:Voron24ptm-bayes.pdf|(PDF, 1,7 МБ)]] {{важно|— обновление 25.10.2024}}.
-
* Проблема разреженности распределения. Эксперименты, показывающие неадекватность асимптотического распределения статистики хи-квадрат.
+
[https://youtu.be/bPUHRCGJMow?list=PLk4h7dmY2eYE_JjvexGUS5MSozoxDFovp Видеозапись]
-
* Статистики модифицированного хи-квадрат, Кульбака-Лейблера, Хеллингера.
+
-
* Обобщённое семейство статистик Кресси-Рида.
+
-
* Алгоритм вычисления квантилей распределения статистики Кресси-Рида.
+
-
* Рекуррентное вычисление статистики Кресси-Рида.
+
-
'''Оценивание интерпретируемости тематических моделей.'''
+
'''Вариационный байесовский вывод.'''
-
* Корректность определения асессорами лишних терминов в темах и лишних тем в документах.
+
* Основная теорема вариационного байесовского вывода.
-
* Визуализация тематических моделей.
+
* [[Вариационный байесовский вывод]] для модели LDA.
 +
* VB ЕМ-алгоритм для модели LDA.
-
''' Оценивание качества темы.'''
+
'''Сэмплирование Гиббса.'''
-
* Чёткость темы: число типичных документов темы, число типичных терминов темы.
+
* Основная теорема о сэмплировании Гиббса.
-
* Однородность (радиус) темы.
+
* [[Сэмплирование Гиббса]] для модели LDA.
-
* Конфликтность темы (близость темы к другим темам).
+
* GS ЕМ-алгоритм для модели LDA.
-
'''Критерии качества классификации и ранжирования.'''
+
'''Замечания о байесовском подходе.'''
-
* Полнота, точность и F-мера в задачах классификации и ранжирования.
+
* Оптимизация гиперпараметров в LDA.
-
* Критерии качества ранжирования: MAP, DCG, NDCG.
+
* Графическая нотация (plate notation). [http://zinkov.com/posts/2013-07-28-stop-using-plates Stop using plate notation].
-
* Оценка качества тематического поиска документов по их длинным фрагментам.
+
* Сравнение байесовского подхода и ARTM.
 +
* Как читать статьи по баейсовским моделям и строить эквивалентные ARTM-модели.
-
'''Задание 1.4.'''
+
== Тематические модели сочетаемости слов ==
-
# Применить OEM к реальным коллекциям.
+
Презентация: [[Media:Voron23ptm-cooc.pdf|(PDF, 1,7 МБ)]] {{важно|— обновление 06.12.2023}}.
-
# Исследовать на реальных данных зависимость внутренних и внешних критериев качества от эвристических параметров алгоритма обучения OEM.
+
[https://youtu.be/khDdc6OvEHc?list=PLk4h7dmY2eYE_JjvexGUS5MSozoxDFovp Видеозапись]
-
# В экспериментах на реальных данных построить зависимости перплексии обучающей и контрольной коллекции от числа итераций и числа тем.
+
-
'''Литература:''' [Blei, 2003].
+
'''Мультиграммные модели.'''
 +
* Модель BigramTM.
 +
* Модель Topical N-grams (TNG).
 +
* Мультимодальная мультиграммная модель.
-
===Иерархические тематические модели===
+
'''Автоматическое выделение терминов.'''
-
* Задачи категоризации текстов. Стандартный метод решения — сведение к последовательности задач классификации.
+
* Алгоритм TopMine для быстрого поиска частых фраз. Критерии выделения коллокаций.
 +
* Синтаксический разбор. Нейросетевые синтаксические анализаторы SyntaxNet, UDpipe.
 +
* Критерии тематичности фраз.
 +
* Комбинирование синтаксической, статистической и тематической фильтрации фраз.
-
'''Тематическая модель с фиксированной иерархией.'''
+
'''Тематические модели дистрибутивной семантики.'''
-
* Вероятностная формализация отношения «тема–подтема». Тождества, связывающие распределения тем и подтем
+
* Дистрибутивная гипотеза. Модели CBOW и SGNS в программе word2vec.
-
* Задача построения иерархического тематического профиля документа.
+
* Модель битермов BTM (Biterm Topic Model) для тематизации коллекций коротких текстов.
-
* Задача построения одного уровня иерархии. Аналитическое решение задачи максимизации правдоподобия, формулы M-шага.
+
<!--* Модель всплесков BBTM (Bursty Biterm Topic Model). -->
-
* Онлайновый иерархический EM-алгоритм.
+
* Модели WNTM (Word Network Topic Model) и WTM (Word Topic Model). Связь с моделью word2vec.
-
* Необходимость частичного обучения для задачи категоризации.
+
* Регуляризаторы когерентности.
-
* Необходимость разреживания для построения иерархического тематического профиля документа.
+
-
'''Сетевые иерархические модели.'''
+
'''Дополнительный материал:'''
-
* Возможность для темы иметь несколько родительских тем.
+
* ''Потапенко А. А.'' Векторные представления слов и документов. DataFest'4. [https://www.youtube.com/watch?v=KEXWC-ICH_Y '''Видео'''].
-
* Дивергенция Кульбака–Лейблера. Свойства KL-дивергенции.
+
-
* Интерпретация KL-дивергенции как степени вложенности распределений. Оценивание силы связей «тема-подтема» KL-дивергенцией.
+
-
* Дополнение тематического дерева до тематической сети.
+
-
'''Иерархические процессы Дирихле.'''
+
== Анализ зависимостей ==
-
* Оптимизация числа тем в плоской модели.
+
Презентация: [[Media:Voron23ptm-rel.pdf|(PDF,&nbsp;1,7&nbsp;МБ)]] {{важно|— обновление 06.12.2023}}.
-
* Создание новых тем в иерархических моделях.
+
[https://youtu.be/uKCMr9yK3gw?list=PLk4h7dmY2eYE_JjvexGUS5MSozoxDFovp Видеозапись]
-
* Нисходящие и восходящие иерархические модели.
+
-
===Робастные тематические модели===
+
'''Зависимости, корреляции, связи.'''
-
* Робастность — устойчивость модели к нарушениям исходных предпосылок, заложенных в основу модели.
+
* Тематические модели классификации и регрессии.
 +
* Модель коррелированных тем CTM (Correlated Topic Model).
 +
* Регуляризаторы гиперссылок и цитирования. Выявление тематических влияний в научных публикациях.
-
'''Робастная тематическая модель с усечёнными распределениями'''
+
'''Время и пространство.'''
-
* Явления синонимии, взаимной заменяемости терминов, эффект burstiness.
+
* Регуляризаторы времени.
-
* Гипотеза об усечённых распределениях терминов тем в документах как ослабление гипотезы условной независимости.
+
* Обнаружение и отслеживание тем.
-
* Аналитическое решение задачи о стационарной точке функции Лагранжа. Модификация ЕМ-алгоритма.
+
* Гео-пространственные модели.
-
'''Робастная тематическая модель с фоном и шумом'''
+
'''Социальные сети.'''
-
* Аналитическое решение задачи о стационарной точке функции Лагранжа, формулы M-шага.
+
* Сфокусированный поиск в социальных медиа (пример: поиск этно-релевантного контента).
-
* Аддитивный и мультипликативный М-шаг.
+
* Выявление тематических сообществ. Регуляризаторы для направленных и ненаправленных связей.
-
* Оценки тематичности слов.
+
* Регуляризаторы для выявления социальных ролей пользователей.
-
* Эксперименты: робастная модель не нуждается в регуляризации и более устойчива к разреживанию.
+
-
'''Задание 1.5'''
+
== Мультимодальные тематические модели ==
-
Обязательные пункты: 1,2 и любой из остальных.
+
Презентация: [[Media:Voron23ptm-modal.pdf|(PDF,&nbsp;2,7&nbsp;МБ)]] {{важно|— обновление 06.12.2023}}.
-
# Реализовать генерацию модельных данных с фоном и шумом.
+
[https://youtu.be/AfwH0A3NJCQ?list=PLk4h7dmY2eYE_JjvexGUS5MSozoxDFovp Видеозапись]
-
# Реализовать робастный алгоритм OEM.
+
-
# Исследовать зависимость точности робастной модели и точности восстановления от параметров априорной вероятности фона и шума. Что происходит с точностью модели, когда эти параметры «плохо угаданы»?
+
-
# Исследовать возможность оптимизации параметров априорной вероятности шума и фона.
+
-
# Исследовать зависимость перплексии и качества поиска от априорной вероятности шума.
+
-
# Исследовать влияние разреживания тематической компоненты робастной модели на перплексию и качество поиска.
+
-
'''Литература:''' [Chemudugunta, 2006].
+
'''Мультиязычные тематические модели.'''
 +
* Параллельные и сравнимые коллекции.
 +
* Регуляризаторы для учёта двуязычных словарей.
 +
* Кросс-язычный информационный поиск.
-
===Тематические модели с выделением ключевых фраз===
+
'''Трёхматричные модели.'''
 +
* Модели трёхматричных разложений. Понятие порождающей модальности.
 +
* Автор-тематическая модель (author-topic model).
 +
* Модель для выделения поведений объектов в видеопотоке.
-
'''Энграммные модели'''
+
'''Тематические модели транзакционных данных.'''
-
* Задача выделения терминов как ключевых фраз (словосочетаний). Словари терминов.
+
* Примеры транзакционных данных в рекомендательных системах, социальных и рекламных сетях.
-
* Морфологический анализ текста.
+
* Гиперграфовая модель ARTM. Теорема о необходимом условии максимума регуляризованного правдоподобия.
-
* Синтаксический анализ текста. Выявление подчинительных связей.
+
* Транзакционные данные в рекомендательных системах. Симметризованная гиперграфовая модель ARTM.
-
* Статистические методы поиска коллокаций. Критерий C-Value.
+
* Тематическая модель предложений и модель коротких сообщений Twitter-LDA.
-
* Совмещённый статистический критерий TF-IDF & CValue.
+
* Анализ транзакционных данных для выявления паттернов экономического поведения клиентов банка. '''[https://youtu.be/0q5p7xP4cdA?t=15168 Видео]'''.
-
* Энграммный онлайновый алгоритм на основе синтаксического анализа и фильтрации терминов путём разреживания.
+
* Анализ банковских транзакционных данных для выявления видов деятельности компаний.
-
* Влияние выделения ключевых фраз на качество модели и интерпретируемость тем.
+
-
===Многоязычные тематические модели===
+
== Моделирование локального контекста ==
 +
Презентация: [[Media:Voron23ptm-segm.pdf|(PDF,&nbsp;2,2&nbsp;МБ)]] {{важно|— обновление 06.12.2023}}.
 +
[https://youtu.be/KHamaJ6Zf6o?list=PLk4h7dmY2eYE_JjvexGUS5MSozoxDFovp Видеозапись]
-
===Распараллеливание алгоритмов обучения тематических моделей===
+
'''Тематическая сегментация.'''
 +
* Метод TopicTiling. Критерии определения границ сегментов.
 +
* Критерии качества сегментации.
 +
* Оптимизация параметров модели TopicTiling.
-
==Литература==
+
'''Тематическое моделирование связного текста'''
-
'''Основная литература'''
+
* Линейная тематизация текста за один проход без матрицы <tex>\Theta</tex>.
 +
* Локализация E-шага. Сравнение с моделью внимания self-attention.
 +
* Двунаправленная тематическая модель контекста.
-
# Маннинг К., Рагхаван П., Шютце Х. Введение в информационный поиск. — Вильямс, 2011.
+
'''Позиционный регуляризатор в ARTM.'''
-
# Daud A., Li J., Zhou L., Muhammad F. Knowledge discovery through directed probabilistic topic models: a survey // Frontiers of Computer Science in China.— 2010.— Vol. 4, no. 2. — Pp. 280–301.
+
* Гипотеза о сегментной структуре текста.
-
# Asuncion A., Welling M., Smyth P., Teh Y. W. On smoothing and inference for topic models // Proceedings of the International Conference on Uncertainty in Artificial Intelligence. — 2009.
+
* Регуляризация и пост-обработка Е-шага. Формулы М-шага.
 +
* Примеры регуляризаторов Е-шага. Разреживание распределения p(t|d,w). Сглаживание тематики слов по контексту.
 +
 
 +
== Именование и суммаризация тем ==
 +
Презентация: [[Media:Voron23ptm-sum.pdf|(PDF,&nbsp;4,3&nbsp;МБ)]] {{важно|— обновление 04.05.2024}}.
 +
[https://youtu.be/nShxhkPbGWY Видеозапись]
 +
 
 +
'''Методы суммаризации текстов.'''
 +
* Задачи автоматической суммаризации текстов. Подходы к суммаризации: extractive и abstractive.
 +
* Оценивание и отбор предложений для суммаризации. Релаксационный метод для многокритериальной дискретной оптимизации.
 +
* Тематическая модель предложений для суммаризации.
 +
* Критерии качества суммаризации. Метрики ROUGE, BLUE.
 +
 
 +
'''Автоматическое именование тем (topic labeling).'''
 +
* Формирование названий-кандидатов.
 +
* Релевантность, покрытие, различность.
 +
* Оценивание качества именования тем.
 +
 
 +
'''Задача суммаризации темы'''
 +
* Задача ранжирования документов
 +
* Задача фильтрации репрезентативных релевантных фраз.
 +
* Задача генерации связного текста
 +
 
 +
== Проект «Тематизатор» ==
 +
Презентация: [[Media:Voron23ptm-project.pdf|(PDF,&nbsp;6,2&nbsp;МБ)]] {{важно|обновление 21.09.2023}}.
 +
[https://youtu.be/LctW1J93lmw?list=PLk4h7dmY2eYE_JjvexGUS5MSozoxDFovp Видеозапись]
 +
 
 +
'''Визуализация тематических моделей'''
 +
* Концепция distant reading.
 +
* Карты знаний, иерархии, взаимосвязи, динамика, сегментация.
 +
* Спектр тем.
 +
* Визуализация матричного разложения.
 +
 
 +
'''Примеры прикладных задач'''
 +
* Поиск этно-релевантных тем в социальных сетях.
 +
* Анализ программ развития российских вузов.
 +
* Поиск и рубрикация научных статей на 100 языках.
 +
* Проекты Школы Прикладного Анализа Данных.
 +
 
 +
'''Анализ требований к «Тематизатору»'''
 +
* Функциональные требования.
 +
* Требования к интерпретируемости.
 +
* Основной пользовательский сценарий: Загрузка, Предобработка, Моделирование, Визуализация, Коррекция.
 +
* Этапизация работ.
 +
 
 +
=Отчетность по курсу=
 +
Условием сдачи курса является выполнение индивидуальных практических заданий.
 +
 
 +
'''Рекомендуемая структура отчёта об исследовании:'''
 +
* Постановка задачи: неформальное описание, ДНК (дано–найти–критерий), структура данных
 +
* Описание простого решения baseline
 +
* Описание основного решения и его вариантов
 +
* Описание набора данных и методики экспериментов
 +
* Результаты экспериментов по подбору гиперпараметров основного решения
 +
* Результаты экспериментов по сравнению основного решения с baseline
 +
* Примеры визуализации модели
 +
* Выводы: что работает, что не работает, инсайты
 +
* Ссылка на код
 +
 
 +
'''Примеры отчётов:'''
 +
* [[Media:kibitova16ptm.pdf|Валерия Кибитова, 2016]]
 +
* [[Media:filin18ptm.pdf|Максим Филин, 2018]]
 +
* [[Media:ikonnikova18ptm.pdf|Мария Иконникова, 2018]]
 +
 
 +
=Литература=
 +
 
 +
# ''Воронцов К. В.'' [[Media:voron17survey-artm.pdf|Вероятностное тематическое моделирование: теория регуляризации ARTM и библиотека с открытым кодом BigARTM]]. 2023.
 +
# ''Hamed Jelodar, Yongli Wang, Chi Yuan, Xia Feng.'' [https://arxiv.org/ftp/arxiv/papers/1711/1711.04305.pdf Latent Dirichlet Allocation (LDA) and Topic modeling: models, applications, a survey]. 2017.
 +
# ''Hofmann T.'' Probabilistic latent semantic indexing // Proceedings of the 22nd annual international ACM SIGIR conference on Research and development in information retrieval. — New York, NY, USA: ACM, 1999. — Pp. 50–57.
 +
# ''Blei D. M., Ng A. Y., Jordan M. I.'' Latent Dirichlet allocation // Journal of Machine Learning Research. — 2003. — Vol. 3. — Pp. 993–1022.
 +
# ''Asuncion A., Welling M., Smyth P., Teh Y. W.'' On smoothing and inference for topic models // Proceedings of the International Conference on Uncertainty in Artificial Intelligence. — 2009.
 +
<!--
 +
# ''Янина А. О., Воронцов К. В.'' [http://jmlda.org/papers/doc/2016/no2/Ianina2016Multimodal.pdf Мультимодальные тематические модели для разведочного поиска в коллективном блоге] // Машинное обучение и анализ данных. 2016. T.2. №2. С.173-186.
 +
# ''Воронцов К.В.'' Тематическое моделирование в BigARTM: теория, алгоритмы, приложения. [[Media:Voron-2015-BigARTM.pdf|Voron-2015-BigARTM.pdf]].
 +
# ''Воронцов К.В.'' Лекции по тематическому моделированию. [[Media:Voron-2013-ptm.pdf|Voron-2013-ptm.pdf]].
'''Дополнительная литература'''
'''Дополнительная литература'''
-
# Воронцов К. В., Потапенко А. А. Регуляризация, робастность и разреженность вероятностных тематических моделей // Компьютерные исследования и моделирование 2012 Т. 4, №12. С 693–706.
+
 
-
# Blei D. M., Ng A. Y., Jordan M. I. Latent Dirichlet allocation // Journal of Machine Learning Research. — 2003. — Vol. 3. — Pp. 993–1022.
+
# Воронцов К. В., Потапенко А. А. [http://jmlda.org/papers/doc/2013/no6/Vorontsov2013TopicModeling.pdf Модификации EM-алгоритма для вероятностного тематического моделирования] // Машинное обучение и анализ данных. — 2013. — T. 1, № 6. С. 657–686.
 +
# Воронцов К. В., Фрей А. И., Ромов П. А., Янина А. О., Суворова М. А., Апишев М. А. [[Media:Voron15damdid.pdf|BigARTM: библиотека с открытым кодом для тематического моделирования больших текстовых коллекций]] // Аналитика и управление данными в областях с интенсивным использованием данных. XVII Международная конференция DAMDID/RCDL’2015, Обнинск, 13-16 октября 2015.
 +
# Маннинг К., Рагхаван П., Шютце Х. Введение в информационный поиск. — Вильямс, 2011.
# Chemudugunta C., Smyth P., Steyvers M. Modeling general and specific aspects of documents with a probabilistic topic model // Advances in Neural Information Processing Systems. — MIT Press, 2006. — Vol. 19. — Pp. 241–248.
# Chemudugunta C., Smyth P., Steyvers M. Modeling general and specific aspects of documents with a probabilistic topic model // Advances in Neural Information Processing Systems. — MIT Press, 2006. — Vol. 19. — Pp. 241–248.
 +
# Daud A., Li J., Zhou L., Muhammad F. Knowledge discovery through directed probabilistic topic models: a survey // Frontiers of Computer Science in China.— 2010.— Vol. 4, no. 2. — Pp. 280–301.
# Dempster A. P., Laird N. M., Rubin D. B. Maximum likelihood from incomplete data via the EM algorithm // J. of the Royal Statistical Society, Series B. — 1977. — no. 34. — Pp. 1–38.
# Dempster A. P., Laird N. M., Rubin D. B. Maximum likelihood from incomplete data via the EM algorithm // J. of the Royal Statistical Society, Series B. — 1977. — no. 34. — Pp. 1–38.
-
# Hofmann T. Probabilistic latent semantic indexing // Proceedings of the 22nd annual international ACM SIGIR conference on Research and development in information retrieval. — New York, NY, USA: ACM, 1999. — Pp. 50–57.
 
# Hoffman M. D., Blei D. M., Bach F. R. Online Learning for Latent Dirichlet Allocation // NIPS, 2010. Pp. 856–864.
# Hoffman M. D., Blei D. M., Bach F. R. Online Learning for Latent Dirichlet Allocation // NIPS, 2010. Pp. 856–864.
# Lu Y., Mei Q., Zhai C. Investigating task performance of probabilistic topic models: an empirical study of PLSA and LDA // Information Retrieval. — 2011. — Vol.14, no.2. — Pp. 178–203.
# Lu Y., Mei Q., Zhai C. Investigating task performance of probabilistic topic models: an empirical study of PLSA and LDA // Information Retrieval. — 2011. — Vol.14, no.2. — Pp. 178–203.
 +
# Vorontsov K. V., Potapenko A. A. [[Media:Voron14mlj.pdf|Additive Regularization of Topic Models]] // Machine Learning. Special Issue “Data Analysis and Intelligent Optimization with Applications”: Volume 101, Issue 1 (2015), Pp. 303-323. [[Media:Voron14mlj-rus.pdf|Русский перевод]]
 +
# Vorontsov K. V., Frei O. I., Apishev M. A., Romov P. A., Suvorova M. A., Yanina A. O. [[Media:Voron15cikm-tm.pdf|Non-Bayesian Additive Regularization for Multimodal Topic Modeling of Large Collections]] // Proceedings of the 2015 Workshop on Topic Models: Post-Processing and Applications, October 19, 2015, Melbourne, Australia. ACM, New York, NY, USA. pp. 29–37.
# Wallach H., Mimno D., McCallum A. Rethinking LDA: Why priors matter // Advances in Neural Information Processing Systems 22 / Ed. by Y. Bengio, D. Schuurmans, J. Lafferty, C. K. I. Williams, A. Culotta. — 2009. — Pp. 1973–1981.
# Wallach H., Mimno D., McCallum A. Rethinking LDA: Why priors matter // Advances in Neural Information Processing Systems 22 / Ed. by Y. Bengio, D. Schuurmans, J. Lafferty, C. K. I. Williams, A. Culotta. — 2009. — Pp. 1973–1981.
-
# Zavitsanos E., Paliouras G., Vouros G. A. Non-parametric estimation of topic hierarchies from texts with hierarchical Dirichlet processes // Journal of Machine Learning Research. — 2011. — Vol. 12. — Pp. 2749–2775.
+
-->
-
== Ссылки ==
+
= Ссылки =
* [[Тематическое моделирование]]
* [[Тематическое моделирование]]
-
* Конспект лекций: [[Media:Voron-2013-ptm.pdf|Voron-2013-ptm.pdf, 500 КБ]] {{важно|(обновление 22 апреля 2013)}}.
+
* [[Аддитивная регуляризация тематических моделей]]
-
* Презентация доклада на семинаре в [http://www2.viniti.ru ВИНИТИ РАН], 23 апреля 2013. '''[[Media:voron-viniti-23apr2013.pdf|(PDF,&nbsp;2.0&nbsp;МБ)]]'''.
+
* [[Коллекции документов для тематического моделирования]]
 +
* [[BigARTM]]
 +
* [http://www.youtube.com/watch?v=vSzsuq7uHPE Видеозапись лекции на ТМШ, 19 июня 2015]
 +
* ''Воронцов К.В.'' [[Media:voron-2014-task-PTM.pdf|Практическое задание по тематическому моделированию, 2014.]]
 +
'''Материалы для первого ознакомления:'''
 +
* ''[[Media:BigARTM-short-intro.pdf|Тематический анализ больших данных]]''. Краткое популярное введение в BigARTM.
 +
* ''[http://postnauka.ru/video/61910 Разведочный информационный поиск]''. Видеолекция на ПостНауке.
 +
* ''[https://postnauka.ru/faq/86373 Тематическое моделирование]''. FAQ на ПостНауке, совместно с Корпоративным университетом Сбербанка.
 +
* ''[https://www.youtube.com/watch?v=MhNbccnVk5Y Байесовская и классическая регуляризация в вероятностном тематическом моделировании]''. Научно-образовательный семинар «Актуальные проблемы прикладной математики» Новосибирского Государственного Университета, 19 февраля 2021. [[Media:Voron-2021-02-19.pdf|Презентация]].
 +
* ''[https://habrahabr.ru/company/yandex/blog/313340 Тематическое моделирование на пути к разведочному информационному поиску]''. Лекция на DataFest3, 10 сентября 2016. [https://www.youtube.com/watch?v=frLW8UVp_Ik&index=5&list=PLJOzdkh8T5kqfhWXhtYevTUHIvrylDLYu Видеозапись].
-
{{Stub}}
+
= Подстраницы =
 +
{{Служебная:Prefixindex/Вероятностные тематические модели (курс лекций, К.В.Воронцов)/}}
[[Категория:Учебные курсы]]
[[Категория:Учебные курсы]]
 +
 +
 +
<!---------------------------------------------------
 +
 +
'''Модели связного текста.'''
 +
* Контекстная документная кластеризация (CDC).
 +
* Метод лексических цепочек.
 +
 +
'''Инициализация.'''
 +
* Случайная инициализация. Инициализация по документам.
 +
* Контекстная документная кластеризация.
 +
* Поиск якорных слов. Алгоритм Ароры.
 +
 +
'''Расширяемые тематические модели.'''
 +
* Пакетный ЕМ-алгоритм.
 +
* Обнаружение новых тем в потоке документов. Инициализация новых тем.
 +
* Проблемы агрегирования коллекций. Жанровая и тематическая фильтрация документов.
 +
 +
== Анализ разнородных данных ==
 +
Презентация: [[Media:Voron18ptm-misc.pdf|(PDF,&nbsp;1,6&nbsp;МБ)]] {{важно|— обновление 03.05.2018}}.
 +
 +
== Примеры приложений тематического моделирования ==
 +
Презентация: [[Media:Voron17ptm11.pdf|(PDF,&nbsp;3,3&nbsp;МБ)]] {{важно|— обновление 16.05.2017}}.
 +
 +
'''Примеры приложений тематического моделирования.'''
 +
* Задача поиска релевантных тем в социальных сетях и новостных потоках.
 +
* Динамическая модель коллекции пресс-релизов.
 +
* Разведочный поиск в коллективном блоге.
 +
* Сценарный анализ записей разговоров контактного центра.
 +
* [[Технология информационного анализа электрокардиосигналов|Информационный анализ электрокардиосигналов]] для скрининговой диагностики.
 +
 +
== Инициализация, траектория регуляризации, тесты адекватности ==
 +
Презентация: [[Media:Voron-PTM-10.pdf|(PDF,&nbsp;Х,Х&nbsp;МБ)]] {{важно|— обновление ХХ.ХХ.2016}}.
 +
 +
'''Траектория регуляризации.'''
 +
* Задача оптимизации трактории в пространстве коэффициентов регуляризации.
 +
* Относительные коэффициенты регуляризации.
 +
* Пространство коэффициентов регуляризации и пространство метрик качества. Регрессионная связь между ними. Инкрементная регрессия.
 +
* Подходы к скаляризации критериев.
 +
* Обучение с подкреплением. Контекстный многорукий бандит. Верхние доверительные границы (UCB).
 +
 +
'''Тесты адекватности.'''
 +
* Статистические тесты условной независимости. Методология проверки статистических гипотез. Критерий согласия хи-квадрат Пирсона.
 +
* Проблема разреженности распределения. Эксперименты, показывающие неадекватность асимптотического распределения статистики хи-квадрат.
 +
* Статистики модифицированного хи-квадрат, Кульбака-Лейблера, Хеллингера.
 +
* Обобщённое семейство статистик Кресси-Рида.
 +
* Эмпирическое оценивание квантилей распределения статистики Кресси-Рида.
 +
* Применения теста условной независимости для поиска плохо смоделированных тем, документов, терминов. Поиск тем для расщепления.
 +
 +
== Обзор оценок качества тематических моделей ==
 +
Презентация: [[Media:Voron-PTM-11.pdf|(PDF,&nbsp;Х,Х&nbsp;МБ)]] {{важно|— обновление ХХ.ХХ.2016}}.
 +
 +
* Внутренние и внешние критерии качества.
 +
* Перплексия и правдоподобие. Интерпретация перплекcии. Перплексия контрольной коллекции. Проблема новых слов в контрольной коллекции. Проблема сравнения моделей с разными словарями. Относительная перплексия.
 +
 +
''' Оценивание качества темы.'''
 +
* Лексическое ядро темы: множество типичных терминов темы.
 +
* Чистота и контрастность темы
 +
* Документное ядро темы: множество типичных документов темы.
 +
* Однородность темы: распределение расстояний между p(w|t) и p(w|t,d).
 +
* Конфликтность темы: близость темы к другим темам.
 +
* Интерпретируемость темы: экспертные оценки, метод интрузий, когерентность. Взрыв интерпретируемости в n-граммных моделях.
 +
 +
'''Устойчивость и полнота.'''
 +
* Эксперименты по оцениванию устойчивости, интерпретируемости и полноты.
 +
* Построение выпуклых оболочек тем и фильтрация зависимых тем в сериях тематических моделей.
 +
 +
'''Критерии качества классификации и ранжирования.'''
 +
* Полнота, точность и F-мера в задачах классификации и ранжирования.
 +
* Критерии качества ранжирования: MAP, DCG, NDCG.
 +
* Оценка качества тематического поиска документов по их длинным фрагментам.
 +
 +
* Вывод M-шага для негладкого регуляризатора.
 +
* Тематическая модель текста и изображений. Задача аннотирования изображений.
 +
-->

Текущая версия

Содержание

Спецкурс читается студентам 2—5 курсов на кафедре «Математические методы прогнозирования» ВМиК МГУ с 2013 года и студентам 6 курса на кафедре «Интеллектуальные системы» ФУПМ МФТИ с 2019 года.

В спецкурсе изучается вероятностное тематическое моделирование (topic modeling) коллекций текстовых документов. Тематическая модель определяет, какие темы содержатся в большой текстовой коллекции, и к каким темам относится каждый документ. Тематические модели позволяют искать тексты по смыслу, а не по ключевым словам, и создавать информационно-поисковые системы нового поколения, основанные на парадигме семантического разведочного поиска (exploratory search). Рассматриваются тематические модели для классификации, категоризации, сегментации, суммаризации текстов естественного языка, а также для рекомендательных систем, анализа банковских транзакционных данных, анализа биомедицинских сигналов. В спецкурсе развивается многокритериальный подход к построению моделей с заданными свойствами — аддитивная регуляризация тематических моделей (АРТМ). Он основан на регуляризации некорректно поставленных задач стохастического матричного разложения. Особое внимание уделяется методам лингвистической регуляризации для моделирования связности текста. Предполагается проведение студентами численных экспериментов на модельных и реальных данных с помощью библиотеки тематического моделирования BigARTM.

От студентов требуются знания курсов линейной алгебры, математического анализа, теории вероятностей. Знание математической статистики, методов оптимизации, машинного обучения, языков программирования Python и С++ желательно, но не обязательно.

Краткая ссылка на эту страницу: bit.ly/2EGWcjA.

Основной материал:

Программа курса

Задача тематического моделирования

Презентация: (PDF, 1,4 МБ) — обновление 19.09.2024. Видеозапись

Цели и задачи тематического моделирования.

Аддитивная регуляризация тематических моделей.

  • Понятие некорректно поставленной задачи по Адамару. Регуляризация.
  • Лемма о максимизации на единичных симплексах. Условия Каруша–Куна–Таккера.
  • Теорема о необходимом условии максимума регуляризованного правдоподобия для ARTM.
  • Классические тематические модели PLSA и LDA как частные случаи ARTM.

Практика тематического моделирования.

  • Проект с открытым кодом BigARTM.
  • Этапы решения практических задач.
  • Методы предварительной обработки текста.
  • Датасеты и практические задания по курсу.

Онлайновый ЕМ-алгоритм и аддитивная регуляризация

Презентация: (PDF, 1,3 МБ) — обновление 03.10.2024. Видеозапись 2022 г. Дополнение: Видеозапись 2023 г.

Часто используемые регуляризаторы.

  • Сглаживание и разреживание.
  • Частичное обучение.
  • Декоррелирование тем.
  • Разреживание для отбора тем.

Онлайновый ЕМ-алгоритм.

  • Рациональный ЕМ-алгоритм (встраивание Е-шага внутрь М-шага).
  • Оффлайновый регуляризованный EM-алгоритм.
  • Улучшение сходимости несмещёнными оценками.
  • Подбор коэффициентов регуляризации.
  • Относительные коэффициенты регуляризации.
  • Библиотеки BigARTM и TopicNet.

Эксперименты с регуляризацией.

  • Производительность BigARTM
  • Оценивание качества: перплексия, когерентность, лексическое ядро
  • Регуляризаторы сглаживания, разреживания, декоррелирования и отбора тем.
  • Комбинирование регуляризаторов, эмпирические рекомендации.

Тематический информационный поиск

Презентация: (PDF, 4,8 МБ) — обновление 10.10.2024. Видеозапись

Мультимодальные тематические модели.

  • Примеры модальностей.
  • Мультимодальный ARTM и регуляризованный ЕМ-алгоритм.

Иерархические тематические модели.

  • Иерархии тем. Послойное построение иерархии.
  • Регуляризаторы для разделения тем на подтемы.
  • Псевдодокументы родительских тем.
  • Модальность родительских тем.

Эксперименты с тематическим поиском.

  • Методика измерения качества поиска.
  • Тематическая модель для документного поиска.
  • Оптимизация гиперпараметров.

Проект «Мастерская знаний»

  • Поисково-рекомендательная система SciSearch.ru
  • Векторный поиск для формирования тематических подборок
  • Требования к тематическим моделям для научного информационного поиска

Оценивание качества тематических моделей

Презентация: (PDF, 1,6 МБ) — обновление 17.10.2024. Видеозапись

Измерение качества тематических моделей.

  • Правдоподобие и перплексия.
  • Интерпретируемость и когерентность. Внутритекстовая когерентность.
  • Разреженность и различность.

Проверка гипотезы условной независимости.

  • Статистики на основе KL-дивергенции и их обобщения.
  • Регуляризатор семантической однородности.
  • Применение статистических тестов условной независимости.

Проблема определения числа тем.

  • Разреживающий регуляризатор для отбора тем.
  • Эксперименты на синтетических и реальных данных.
  • Сравнение с байесовской моделью HDP (Hierarchical Dirichlet Process).
  • Эффект отбрасывания малых, дублирующих и линейно зависимых тем.

Проблема тематической несбалансированности в данных

  • Проблема малых тем и тем-дубликатов
  • Тематическая несбалансированность как основная причина неинтерпретируемости тем
  • Эксперименты с регуляризаторами отбора тем и декоррелирования
  • Регуляризатор семантической однородности

BigARTM и базовые инструменты

Мурат Апишев. Презентация: (zip, 0,6 МБ) — обновление 17.02.2017. Видеозапись

Предварительная обработка текстов

  • Парсинг «сырых» данных.
  • Токенизация, стемминг и лемматизация.
  • Выделение энграмм.
  • Законы Ципфа и Хипса. Фильтрация словаря коллекции. Удаление стоп-слов.

Библиотека BigARTM

  • Методологические рекоммендации по проведению экспериментов.
  • Установка BigARTM.
  • Формат и импорт входных данных.
  • Обучение простой модели (без регуляризации): создание, инициализация, настройка и оценивание модели.
  • Инструмент визуализации тематических моделей VisARTM. Основные возможности, демонстрация работы.

Дополнительный материал:

  • Презентация: (PDF, 1,5 МБ) — обновление 17.03.2017.
  • Видео — обновление 22.03.2017.
  • Воркшоп по BigARTM на DataFest'4. Видео.

Теория ЕМ-алгоритма

Презентация: (PDF, 2,0 МБ) — обновление 25.10.2024. Видеозапись

Классические модели PLSA, LDA.

  • Модель PLSA.
  • Модель LDA. Распределение Дирихле и его свойства.
  • Максимизация апостериорной вероятности для модели LDA.

Общий EM-алгоритм.

  • EM-алгоритм для максимизации неполного правдоподобия.
  • Регуляризованный EM-алгоритм. Сходимость в слабом смысле.
  • Альтернативный вывод формул ARTM.

Эксперименты с моделями PLSA, LDA.

  • Проблема неустойчивости (на синтетических данных).
  • Проблема неустойчивости (на реальных данных).
  • Проблема переобучения и робастные модели.

Байесовское обучение модели LDA

Презентация: (PDF, 1,7 МБ) — обновление 25.10.2024. Видеозапись

Вариационный байесовский вывод.

Сэмплирование Гиббса.

Замечания о байесовском подходе.

  • Оптимизация гиперпараметров в LDA.
  • Графическая нотация (plate notation). Stop using plate notation.
  • Сравнение байесовского подхода и ARTM.
  • Как читать статьи по баейсовским моделям и строить эквивалентные ARTM-модели.

Тематические модели сочетаемости слов

Презентация: (PDF, 1,7 МБ) — обновление 06.12.2023. Видеозапись

Мультиграммные модели.

  • Модель BigramTM.
  • Модель Topical N-grams (TNG).
  • Мультимодальная мультиграммная модель.

Автоматическое выделение терминов.

  • Алгоритм TopMine для быстрого поиска частых фраз. Критерии выделения коллокаций.
  • Синтаксический разбор. Нейросетевые синтаксические анализаторы SyntaxNet, UDpipe.
  • Критерии тематичности фраз.
  • Комбинирование синтаксической, статистической и тематической фильтрации фраз.

Тематические модели дистрибутивной семантики.

  • Дистрибутивная гипотеза. Модели CBOW и SGNS в программе word2vec.
  • Модель битермов BTM (Biterm Topic Model) для тематизации коллекций коротких текстов.
  • Модели WNTM (Word Network Topic Model) и WTM (Word Topic Model). Связь с моделью word2vec.
  • Регуляризаторы когерентности.

Дополнительный материал:

  • Потапенко А. А. Векторные представления слов и документов. DataFest'4. Видео.

Анализ зависимостей

Презентация: (PDF, 1,7 МБ) — обновление 06.12.2023. Видеозапись

Зависимости, корреляции, связи.

  • Тематические модели классификации и регрессии.
  • Модель коррелированных тем CTM (Correlated Topic Model).
  • Регуляризаторы гиперссылок и цитирования. Выявление тематических влияний в научных публикациях.

Время и пространство.

  • Регуляризаторы времени.
  • Обнаружение и отслеживание тем.
  • Гео-пространственные модели.

Социальные сети.

  • Сфокусированный поиск в социальных медиа (пример: поиск этно-релевантного контента).
  • Выявление тематических сообществ. Регуляризаторы для направленных и ненаправленных связей.
  • Регуляризаторы для выявления социальных ролей пользователей.

Мультимодальные тематические модели

Презентация: (PDF, 2,7 МБ) — обновление 06.12.2023. Видеозапись

Мультиязычные тематические модели.

  • Параллельные и сравнимые коллекции.
  • Регуляризаторы для учёта двуязычных словарей.
  • Кросс-язычный информационный поиск.

Трёхматричные модели.

  • Модели трёхматричных разложений. Понятие порождающей модальности.
  • Автор-тематическая модель (author-topic model).
  • Модель для выделения поведений объектов в видеопотоке.

Тематические модели транзакционных данных.

  • Примеры транзакционных данных в рекомендательных системах, социальных и рекламных сетях.
  • Гиперграфовая модель ARTM. Теорема о необходимом условии максимума регуляризованного правдоподобия.
  • Транзакционные данные в рекомендательных системах. Симметризованная гиперграфовая модель ARTM.
  • Тематическая модель предложений и модель коротких сообщений Twitter-LDA.
  • Анализ транзакционных данных для выявления паттернов экономического поведения клиентов банка. Видео.
  • Анализ банковских транзакционных данных для выявления видов деятельности компаний.

Моделирование локального контекста

Презентация: (PDF, 2,2 МБ) — обновление 06.12.2023. Видеозапись

Тематическая сегментация.

  • Метод TopicTiling. Критерии определения границ сегментов.
  • Критерии качества сегментации.
  • Оптимизация параметров модели TopicTiling.

Тематическое моделирование связного текста

  • Линейная тематизация текста за один проход без матрицы \Theta.
  • Локализация E-шага. Сравнение с моделью внимания self-attention.
  • Двунаправленная тематическая модель контекста.

Позиционный регуляризатор в ARTM.

  • Гипотеза о сегментной структуре текста.
  • Регуляризация и пост-обработка Е-шага. Формулы М-шага.
  • Примеры регуляризаторов Е-шага. Разреживание распределения p(t|d,w). Сглаживание тематики слов по контексту.

Именование и суммаризация тем

Презентация: (PDF, 4,3 МБ) — обновление 04.05.2024. Видеозапись

Методы суммаризации текстов.

  • Задачи автоматической суммаризации текстов. Подходы к суммаризации: extractive и abstractive.
  • Оценивание и отбор предложений для суммаризации. Релаксационный метод для многокритериальной дискретной оптимизации.
  • Тематическая модель предложений для суммаризации.
  • Критерии качества суммаризации. Метрики ROUGE, BLUE.

Автоматическое именование тем (topic labeling).

  • Формирование названий-кандидатов.
  • Релевантность, покрытие, различность.
  • Оценивание качества именования тем.

Задача суммаризации темы

  • Задача ранжирования документов
  • Задача фильтрации репрезентативных релевантных фраз.
  • Задача генерации связного текста

Проект «Тематизатор»

Презентация: (PDF, 6,2 МБ) — обновление 21.09.2023. Видеозапись

Визуализация тематических моделей

  • Концепция distant reading.
  • Карты знаний, иерархии, взаимосвязи, динамика, сегментация.
  • Спектр тем.
  • Визуализация матричного разложения.

Примеры прикладных задач

  • Поиск этно-релевантных тем в социальных сетях.
  • Анализ программ развития российских вузов.
  • Поиск и рубрикация научных статей на 100 языках.
  • Проекты Школы Прикладного Анализа Данных.

Анализ требований к «Тематизатору»

  • Функциональные требования.
  • Требования к интерпретируемости.
  • Основной пользовательский сценарий: Загрузка, Предобработка, Моделирование, Визуализация, Коррекция.
  • Этапизация работ.

Отчетность по курсу

Условием сдачи курса является выполнение индивидуальных практических заданий.

Рекомендуемая структура отчёта об исследовании:

  • Постановка задачи: неформальное описание, ДНК (дано–найти–критерий), структура данных
  • Описание простого решения baseline
  • Описание основного решения и его вариантов
  • Описание набора данных и методики экспериментов
  • Результаты экспериментов по подбору гиперпараметров основного решения
  • Результаты экспериментов по сравнению основного решения с baseline
  • Примеры визуализации модели
  • Выводы: что работает, что не работает, инсайты
  • Ссылка на код

Примеры отчётов:

Литература

  1. Воронцов К. В. Вероятностное тематическое моделирование: теория регуляризации ARTM и библиотека с открытым кодом BigARTM. 2023.
  2. Hamed Jelodar, Yongli Wang, Chi Yuan, Xia Feng. Latent Dirichlet Allocation (LDA) and Topic modeling: models, applications, a survey. 2017.
  3. Hofmann T. Probabilistic latent semantic indexing // Proceedings of the 22nd annual international ACM SIGIR conference on Research and development in information retrieval. — New York, NY, USA: ACM, 1999. — Pp. 50–57.
  4. Blei D. M., Ng A. Y., Jordan M. I. Latent Dirichlet allocation // Journal of Machine Learning Research. — 2003. — Vol. 3. — Pp. 993–1022.
  5. Asuncion A., Welling M., Smyth P., Teh Y. W. On smoothing and inference for topic models // Proceedings of the International Conference on Uncertainty in Artificial Intelligence. — 2009.

Ссылки

Материалы для первого ознакомления:

Подстраницы

Вероятностные тематические модели (курс лекций, К.В.Воронцов)/2015Вероятностные тематические модели (курс лекций, К.В.Воронцов)/2016Вероятностные тематические модели (курс лекций, К.В.Воронцов)/2017
Вероятностные тематические модели (курс лекций, К.В.Воронцов)/2018Вероятностные тематические модели (курс лекций, К.В.Воронцов)/2019, ВМКВероятностные тематические модели (курс лекций, К.В.Воронцов)/2020
Вероятностные тематические модели (курс лекций, К.В.Воронцов)/2021
Личные инструменты