Вероятностные тематические модели (курс лекций, К.В.Воронцов)

Материал из MachineLearning.

(Различия между версиями)
Перейти к: навигация, поиск
(Вероятностный латентный семантический анализ)
Текущая версия (21:10, 24 октября 2024) (править) (отменить)
 
(278 промежуточных версий не показаны.)
Строка 1: Строка 1:
{{TOCright}}
{{TOCright}}
-
Спецкурс читается студентам 2—5 курсов на кафедре «[[Математические методы прогнозирования (кафедра ВМиК МГУ)|Математические методы прогнозирования]]» [[ВМиК]] [[МГУ]] с 2013 года.
+
Спецкурс читается студентам 2—5 курсов на кафедре «[[Математические методы прогнозирования (кафедра ВМиК МГУ)|Математические методы прогнозирования]]» [[ВМиК]] [[МГУ]] с 2013 года и студентам 6 курса на кафедре «[[Интеллектуальные системы (кафедра МФТИ)|Интеллектуальные системы]]» [[ФУПМ]] [[МФТИ]] с 2019 года.
-
От студентов требуются знания курсов линейной алгебры, математического анализа, теории вероятностей. Знание математической статистики, методов оптимизации и какого-либо языка программирования желательно, но не обязательно.
+
В спецкурсе изучается вероятностное [[тематическое моделирование]] (topic modeling) коллекций текстовых документов. Тематическая модель определяет, какие темы содержатся в большой текстовой коллекции, и к каким темам относится каждый документ. Тематические модели позволяют искать тексты по смыслу, а не по ключевым словам, и создавать информационно-поисковые системы нового поколения, основанные на парадигме семантического разведочного поиска (exploratory search). Рассматриваются тематические модели для классификации, категоризации, сегментации, суммаризации текстов естественного языка, а также для рекомендательных систем, анализа банковских транзакционных данных, анализа биомедицинских сигналов. В спецкурсе развивается многокритериальный подход к построению моделей с заданными свойствами — [[аддитивная регуляризация тематических моделей]] (АРТМ). Он основан на регуляризации некорректно поставленных задач стохастического матричного разложения. Особое внимание уделяется методам лингвистической регуляризации для моделирования связности текста. Предполагается проведение студентами численных экспериментов на модельных и реальных данных с помощью библиотеки тематического моделирования [[BigARTM]].
-
Условием сдачи спецкурса является выполнение обязательных практических заданий.
+
От студентов требуются знания курсов линейной алгебры, математического анализа, теории вероятностей. Знание математической статистики, методов оптимизации, машинного обучения, языков программирования Python и С++ желательно, но не обязательно.
-
= Программа курса =
+
Краткая ссылка на эту страницу: [http://bit.ly/2EGWcjA bit.ly/2EGWcjA].
-
== Часть 1 ==
+
'''Основной материал:'''
 +
* ''Воронцов К. В.'' [[Media:voron17survey-artm.pdf|Вероятностное тематическое моделирование: теория регуляризации ARTM и библиотека с открытым кодом BigARTM]]. {{важно|— обновление 26.06.2023}}.
 +
* [https://www.youtube.com/playlist?list=PLk4h7dmY2eYE_JjvexGUS5MSozoxDFovp Видеозаписи, 2023 осень (МФТИ)].
-
=== Задачи анализа текстов. Вероятностные модели коллекций текстов ===
+
= Программа курса =
-
 
+
-
'''Задачи классификации текстов.'''
+
-
* Коллекция текстовых документов. Векторное представление документа.
+
-
* Постановка задачи классификации текстов. Объекты, признаки, классы, обучающая выборка. Распознавание текстов заданной тематики. Анализ тональности. Частоты слов (терминов) как признаки. Линейный классификатор.
+
-
* Задача распознавание жанра текстов. Распознавание научных текстов. Примеры признаков.
+
-
* Задача категоризации текстов, сведение к последовательности задач классификации.
+
-
 
+
-
'''Задачи предварительной обработки текстов.'''
+
-
* Очистка: удаление номеров страниц, переносов, опечаток, нетекстовой информация, оглавлений, таблиц, рисунков.
+
-
* Лемматизация и стемминг.
+
-
* Удаление стоп-слов. Удаление редких слов.
+
-
'''Задачи информационного поиска.'''
+
== Задача тематического моделирования ==
-
* Задача поиска документов по запросу. Инвертированный индекс. Косинусная мера сходства.
+
Презентация: [[Media:Voron24ptm-intro.pdf|(PDF, 1,4 МБ)]] {{важно|— обновление 19.09.2024}}.
-
* Критерий текстовой релевантности TF-IDF. Вероятностная модель и вывод формулы TF-IDF.
+
[https://www.youtube.com/watch?v=k0XHeu4MeBo&list=PLk4h7dmY2eYE_JjvexGUS5MSozoxDFovp Видеозапись]
-
* Задача ранжирования. Примеры признаков. Формирование асессорских обучающих выборок.
+
-
'''Униграммная модель документов и коллекции.'''
+
'''Цели и задачи тематического моделирования.'''
-
* Вероятностное пространство. Гипотезы «мешка слов» и «мешка документов». Текст как простая выборка, порождаемая вероятностным распределением. Векторное представление документа как эмпирическое распределение.
+
* Понятие «темы», цели и задачи [[тематическое моделирование|тематического моделирования]].
-
* Понятие параметрической порождающей модели. Принцип максимума правдоподобия.
+
* Вероятностная модель порождения текста.
-
* Униграммная модель документов и коллекции. Аналитическое решение задачи о стационарной точке функции Лагранжа. Частотные оценки условных вероятностей.
+
* [[EM-алгоритм]] и его элементарная интерпретация. Формула Байеса и частотные оценки условных вероятностей.
 +
* [[Метод наибольшего правдоподобия|Принцип максимума правдоподобия]].
-
'''Литература:''' [Маннинг, 2011].
+
'''Аддитивная регуляризация тематических моделей.'''
 +
* Понятие некорректно поставленной задачи по Адамару. Регуляризация.
 +
* Лемма о максимизации на единичных симплексах. [[Условия Каруша–Куна–Таккера]].
 +
* Теорема о необходимом условии максимума регуляризованного правдоподобия для ARTM.
 +
* Классические тематические модели [[Вероятностный латентный семантический анализ|PLSA]] и [[Латентное размещение Дирихле|LDA]] как частные случаи ARTM.
-
=== Вероятностный латентный семантический анализ ===
+
'''Практика тематического моделирования.'''
-
* ''Напоминания.'' Коллекция текстовых документов. Векторное представление документа. Задачи информационного поиска и классификации текстов.
+
* Проект с открытым кодом BigARTM.
 +
* Этапы решения практических задач.
 +
* Методы предварительной обработки текста.
 +
* Датасеты и практические задания по курсу.
-
'''Мотивации вероятностного тематического моделирования
+
== Онлайновый ЕМ-алгоритм и аддитивная регуляризация ==
-
* Идея перехода от вектора (терминов) к вектору тем.
+
Презентация: [[Media:Voron24ptm-regular.pdf|(PDF, 1,3 МБ)]] {{важно|— обновление 03.10.2024}}.
-
* Цели тематического моделирования: поиск научной информации, агрегирование и анализ новостных потоков, формирование сжатых признаковых описаний документов для классификации и категоризации текстовых документов, обход проблем синонимии и омонимии.
+
[https://www.youtube.com/live/wq7MlvWph3s?si=38czCY8IbWNYSUVw Видеозапись 2022 г.] Дополнение:
 +
[https://youtu.be/LctW1J93lmw?list=PLk4h7dmY2eYE_JjvexGUS5MSozoxDFovp Видеозапись 2023 г.]
-
'''Задача тематического моделирования.'''
+
'''Часто используемые регуляризаторы.'''
-
* Вероятностное пространство. Тема как латентная (скрытая) переменная. Представление темы дискретным распределением на множестве слов.
+
* Сглаживание и разреживание.
-
* Модель смеси униграмм. Недостаток: каждый документ принадлежит только одной теме.
+
* Частичное обучение.
-
* Представление документа дискретным распределением на множестве тем. Гипотеза условной независимости. Порождающая модель документа как вероятностной смеси тем.
+
* Декоррелирование тем.
-
* Постановка обратной задачи восстановления параметров модели по данным.
+
* Разреживание для отбора тем.
-
'''Вероятностный латентный семантический анализ (PLSA).'''
+
'''Онлайновый ЕМ-алгоритм.'''
-
* Частотные оценки условных вероятностей терминов тем и тем документов. Формула Байеса для апостериорной вероятности темы. Элементарное обоснование ЕМ-алгоритма.
+
-
* Принцип максимума правдоподобия, аналитическое решение задачи о стационарной точке функции Лагранжа, формулы M-шага.
+
* Рациональный ЕМ-алгоритм (встраивание Е-шага внутрь М-шага).
* Рациональный ЕМ-алгоритм (встраивание Е-шага внутрь М-шага).
 +
* Оффлайновый регуляризованный EM-алгоритм.
 +
* Улучшение сходимости несмещёнными оценками.
 +
* Подбор коэффициентов регуляризации.
 +
* Относительные коэффициенты регуляризации.
 +
* Библиотеки BigARTM и TopicNet.
-
'''Проведение экспериментов на модельных данных.'''
+
'''Эксперименты с регуляризацией.'''
-
* Процесс порождения терминов в документе. Генератор модельных (синтетических) данных. Генерация случайной величины из заданного дискретного распределения.
+
* Производительность BigARTM
-
* Оценивание точности восстановления модельных данных. Расстояние между дискретными распределениями. Проблема перестановки тем, венгерский алгоритм.
+
* Оценивание качества: перплексия, когерентность, лексическое ядро
-
* Проблема неединственности и неустойчивости матричного разложения. Экспериментальное оценивание устойчивости решения.
+
* Регуляризаторы сглаживания, разреживания, декоррелирования и отбора тем.
 +
* Комбинирование регуляризаторов, эмпирические рекомендации.
-
'''Задание 1.1'''
+
== Тематический информационный поиск ==
-
Обязательные пункты: 1–3 и любой из последующих.
+
Презентация: [[Media:Voron24ptm-exp.pdf|(PDF, 4,8 МБ)]] {{важно|— обновление 10.10.2024}}.
-
# Реализовать генератор модельных данных. Реализовать вычисление эмпирических распределений терминов тем и тем документов.
+
[https://youtu.be/GzjQHdWYYBI?list=PLk4h7dmY2eYE_JjvexGUS5MSozoxDFovp Видеозапись]
-
# Реализовать оценку точности восстановления с учётом перестановки тем. Вычислить оценку точности для исходных модельных распределений.
+
-
# Реализовать рациональный ЕМ-алгоритм.
+
-
# Исследовать зависимости точности модели и точности восстановления от числа итераций и от числа тем в модели (при фиксированном числе тем в исходных данных). Что происходит, когда тем больше, чем нужно? Меньше, чем нужно?
+
-
# Исследовать влияние случайного начального приближения на точность модели и точность восстановления. Построить для них эмпирические распределения и доверительные интервалы. Можно ли утверждать, что EM-алгоритм всегда сходится к одному и тому же решению?
+
-
# Исследовать, когда проблема неустойчивости возникает, когда не возникает.
+
-
'''Задание для 4 курса ФУПМ:''' [[Media:voron-2014-task-PTM.pdf|voron-2014-task-PTM.pdf]]
+
'''Мультимодальные тематические модели.'''
 +
* Примеры модальностей.
 +
* Мультимодальный ARTM и регуляризованный ЕМ-алгоритм.
-
'''Литература:''' [Hofmann, 1999].
+
'''Иерархические тематические модели.'''
 +
* Иерархии тем. Послойное построение иерархии.
 +
* Регуляризаторы для разделения тем на подтемы.
 +
* Псевдодокументы родительских тем.
 +
* Модальность родительских тем.
-
===Модификации алгоритма обучения модели PLSA===
+
'''Эксперименты с тематическим поиском.'''
 +
* Методика измерения качества поиска.
 +
* Тематическая модель для документного поиска.
 +
* Оптимизация гиперпараметров.
-
* ''Напоминания.'' Задача тематического моделирования коллекции текстовых документов. Модель PLSA, формулы Е-шага и М-шага.
+
'''Проект «Мастерская знаний»'''
 +
* Поисково-рекомендательная система SciSearch.ru
 +
* Векторный поиск для формирования тематических подборок
 +
* Требования к тематическим моделям для научного информационного поиска
-
'''Обобщённый ЕМ-алгоритм (GEM).'''
+
== Оценивание качества тематических моделей ==
-
* Проблема медленной сходимости EM-алгоритма на больших коллекциях. Проблема хранения трёхмерных матриц.
+
Презентация: [[Media:Voron24ptm-quality.pdf|(PDF, 1,6 МБ)]] {{важно|— обновление 17.10.2024}}.
-
* Эвристика частых обновлений параметров.
+
[https://youtu.be/udJ3qsMkwJc?list=PLk4h7dmY2eYE_JjvexGUS5MSozoxDFovp Видеозапись]
-
* Эвристика замены средних экспоненциальным сглаживанием.
+
-
'''Стохастический ЕМ-алгоритм (SEM).'''
+
'''Измерение качества тематических моделей.'''
-
* Гипотеза разреженности апоcтериорного распределения тем p(t|d,w).
+
* Правдоподобие и перплексия.
-
* Эвристика замены апостериорного распределения его несмещённой оценкой.
+
* Интерпретируемость и когерентность. Внутритекстовая когерентность.
-
* Алгоритм сэмплирования Гиббса.
+
* Разреженность и различность.
-
* Эксперименты по подбору оптимального числа сэмплирований.
+
-
'''Онлайновый ЕМ-алгоритм (OEM).'''
+
'''Проверка гипотезы условной независимости.'''
-
* Проблема больших данных.
+
* Статистики на основе KL-дивергенции и их обобщения.
-
* Эвристика разделения М-шага.
+
* Регуляризатор семантической однородности.
-
* Эвристика разделения коллекции на пачки документов.
+
* Применение статистических тестов условной независимости.
-
* Добавление новых документов (folding-in).
+
-
'''Способы формирования начальных приближений.'''
+
'''Проблема определения числа тем.'''
-
* Случайная инициализация.
+
* Разреживающий регуляризатор для отбора тем.
-
* Инициализация по документам.
+
* Эксперименты на синтетических и реальных данных.
 +
* Сравнение с байесовской моделью HDP (Hierarchical Dirichlet Process).
 +
* Эффект отбрасывания малых, дублирующих и линейно зависимых тем.
-
'''Частичное обучение (Semi-supervised EM).'''
+
'''Проблема тематической несбалансированности в данных'''
-
* Виды частично размеченных данных: привязка документа к темам, привязка термина к темам, нерелевантность, переранжирование списков терминов тем и тем документов, виртуальные документы.
+
* Проблема малых тем и тем-дубликатов
-
* Использование частично размеченных данных для инициализации.
+
* Тематическая несбалансированность как основная причина неинтерпретируемости тем
-
* Использование частично размеченных данных в качестве поправок на М-шаге ЕМ-алгоритма.
+
* Эксперименты с регуляризаторами отбора тем и декоррелирования
 +
* Регуляризатор семантической однородности
-
'''Задание 1.2'''
+
== BigARTM и базовые инструменты ==
-
Обязательные пункты: 1 и любой из последующих.
+
''Мурат Апишев''.
-
# Реализовать онлайновый алгоритм OEM.
+
Презентация: [[Media:Base_instruments.zip‎|(zip, 0,6 МБ)]] {{важно|— обновление 17.02.2017}}.
-
# Исследовать влияние размера первой пачки и последующих пачек на качество модели.
+
[https://youtu.be/AIN00vWOJGw Видеозапись]
-
# Исследовать влияние выбора числа итераций на внутреннем и внешнем циклах алгоритма OEM на качество и скорость построения модели.
+
-
# Исследовать возможность улучшения качество модели с помощью второго прохода по коллекции (без инициализации p(w|t)).
+
-
# Исследовать влияние частичной разметки на точность модели и точность восстановления. Проверить гипотезу, что небольшой доли правильно размеченных документов уже достаточно для существенного улучшения точности и устойчивости модели.
+
-
'''Литература:''' [Hoffman, 2010].
+
'''Предварительная обработка текстов'''
 +
* Парсинг «сырых» данных.
 +
* Токенизация, стемминг и лемматизация.
 +
* Выделение энграмм.
 +
* Законы Ципфа и Хипса. Фильтрация словаря коллекции. Удаление стоп-слов.
-
===Разреживание и сглаживание===
+
'''Библиотека BigARTM'''
 +
* Методологические рекоммендации по проведению экспериментов.
 +
* Установка [[BigARTM]].
 +
* Формат и импорт входных данных.
 +
* Обучение простой модели (без регуляризации): создание, инициализация, настройка и оценивание модели.
 +
* Инструмент визуализации тематических моделей VisARTM. Основные возможности, демонстрация работы.
-
'''Разреживание'''
+
'''Дополнительный материал:'''
-
* Эмпирические законы Ципфа, Ципфа-Мандельброта, Хипса.
+
* Презентация: [[Media:VoronApishev17ptm5.pdf|(PDF, 1,5 МБ)]] {{важно|— обновление 17.03.2017}}.
-
* Гипотеза разреженности распределений терминов тем и тем документов.
+
* [https://www.youtube.com/watch?v=2LEQuLRxaIY&t=1s '''Видео'''] {{важно|— обновление 22.03.2017}}.
-
* Принудительное разреживание в ЕМ-алгоритме. Оценка значимости (salience) параметров, метод [[OBD|Optimal Brain Damage]].
+
* Воркшоп по BigARTM на DataFest'4. [https://www.youtube.com/watch?v=oQcHEm2-7PM '''Видео'''].
-
* Выделение нетематических терминов.
+
-
* Генерация реалистичных модельных данных.
+
-
* Связь разреженности и единственности неотрицательного матричного разложения.
+
-
'''Сглаживание'''
+
== Теория ЕМ-алгоритма ==
-
* Модель латентного размещения Дирихле LDA.
+
Презентация: [[Media:Voron24ptm-emlda.pdf|(PDF, 2,0 МБ)]] {{важно|— обновление 25.10.2024}}.
-
* Свойства распределения Дирихле, сопряжённость с мультиномиальным распределением.
+
[https://youtu.be/svQTYv0X2cs?list=PLk4h7dmY2eYE_JjvexGUS5MSozoxDFovp Видеозапись]
-
* Байесовский вывод. Сглаженные частотные оценки условных вероятностей.
+
-
* Максимизация обоснованности модели. Численные методы оптимизации гиперпараметров.
+
-
* Сравнение LDA и PLSA. Экспериментальные факты: LDA скорее улучшает оценки редких слов, чем снижает переобучение.
+
-
* Дилемма разреживания и сглаживания.
+
-
'''Задание 1.3'''
+
'''Классические модели PLSA, LDA.'''
-
Обязательные пункты: 1 и любой из остальных.
+
* Модель PLSA.
-
# Реализовать разреживание в онлайновом алгоритме OEM.
+
* Модель LDA. Распределение Дирихле и его свойства.
-
# Исследовать зависимость точности модели и точности восстановления от степени разреженности исходных модельных данных.
+
* Максимизация апостериорной вероятности для модели LDA.
-
# Исследовать влияние разреживания на точность модели и точность восстановления. Проверить гипотезу, что если исходные данные разрежены, то разреживание существенно улучшает точность восстановления и слабо влияет на точность модели.
+
-
# Исследовать влияние сглаживания на точность модели и точность восстановления.
+
-
'''Литература:''' [Blei, 2003].
+
'''Общий EM-алгоритм.'''
 +
* EM-алгоритм для максимизации неполного правдоподобия.
 +
* Регуляризованный EM-алгоритм. Сходимость в слабом смысле.
 +
* Альтернативный вывод формул ARTM.
-
===Внутренние методы оценивания качества===
+
'''Эксперименты с моделями PLSA, LDA.'''
 +
* Проблема неустойчивости (на синтетических данных).
 +
* Проблема неустойчивости (на реальных данных).
 +
* Проблема переобучения и робастные модели.
-
'''Реальные данные.'''
+
== Байесовское обучение модели LDA ==
-
* Текстовые коллекции, библиотеки алгоритмов, источники информации.
+
Презентация: [[Media:Voron24ptm-bayes.pdf|(PDF, 1,7 МБ)]] {{важно|— обновление 25.10.2024}}.
-
* Внутренние и внешние критерии качества.
+
[https://youtu.be/bPUHRCGJMow?list=PLk4h7dmY2eYE_JjvexGUS5MSozoxDFovp Видеозапись]
-
* Дополнительные данные для построения внешних критериев качества.
+
-
'''Перплексия и правдоподобие.'''
+
'''Вариационный байесовский вывод.'''
-
* Определение и интерпретация перплекcии.
+
* Основная теорема вариационного байесовского вывода.
-
* Перплексия контрольной коллекции. Проблема новых слов в контрольной коллекции.
+
* [[Вариационный байесовский вывод]] для модели LDA.
 +
* VB ЕМ-алгоритм для модели LDA.
-
'''Когерентность.'''
+
'''Сэмплирование Гиббса.'''
-
* Определение когерентности.
+
* Основная теорема о сэмплировании Гиббса.
-
* Эксперименты, показывающие связь когерентности и интерпретируемости.
+
* [[Сэмплирование Гиббса]] для модели LDA.
-
* Способы оценивания совместной встречаемости слов.
+
* GS ЕМ-алгоритм для модели LDA.
-
''' Оценивание качества темы.'''
+
'''Замечания о байесовском подходе.'''
-
* Контрастность темы (число типичных документов темы, число типичных терминов темы).
+
* Оптимизация гиперпараметров в LDA.
-
* Пиковость темы.
+
* Графическая нотация (plate notation). [http://zinkov.com/posts/2013-07-28-stop-using-plates Stop using plate notation].
-
* Однородность (радиус) темы.
+
* Сравнение байесовского подхода и ARTM.
-
* Конфликтность темы (близость темы к другим темам).
+
* Как читать статьи по баейсовским моделям и строить эквивалентные ARTM-модели.
-
'''Статистические тесты условной независимости.'''
+
== Тематические модели сочетаемости слов ==
-
* Методология проверки статистических гипотез. Критерий согласия хи-квадрат Пирсона. Матрица кросс-табуляции «термины–документы» для заданной темы.
+
Презентация: [[Media:Voron23ptm-cooc.pdf|(PDF, 1,7 МБ)]] {{важно|— обновление 06.12.2023}}.
-
* Проблема разреженности распределения. Эксперименты, показывающие неадекватность асимптотического распределения статистики хи-квадрат.
+
[https://youtu.be/khDdc6OvEHc?list=PLk4h7dmY2eYE_JjvexGUS5MSozoxDFovp Видеозапись]
-
* Статистики модифицированного хи-квадрат, Кульбака-Лейблера, Хеллингера.
+
-
* Обобщённое семейство статистик Кресси-Рида.
+
-
* Алгоритм вычисления квантилей распределения статистики Кресси-Рида.
+
-
* Рекуррентное вычисление статистики Кресси-Рида.
+
-
'''Литература:''' [Newman, 2009–2011].
+
'''Мультиграммные модели.'''
 +
* Модель BigramTM.
 +
* Модель Topical N-grams (TNG).
 +
* Мультимодальная мультиграммная модель.
-
===Внешние методы оценивания качества===
+
'''Автоматическое выделение терминов.'''
 +
* Алгоритм TopMine для быстрого поиска частых фраз. Критерии выделения коллокаций.
 +
* Синтаксический разбор. Нейросетевые синтаксические анализаторы SyntaxNet, UDpipe.
 +
* Критерии тематичности фраз.
 +
* Комбинирование синтаксической, статистической и тематической фильтрации фраз.
-
'''Оценивание интерпретируемости тематических моделей.'''
+
'''Тематические модели дистрибутивной семантики.'''
-
* Корректность определения асессорами лишних терминов в темах и лишних тем в документах.
+
* Дистрибутивная гипотеза. Модели CBOW и SGNS в программе word2vec.
-
* Визуализация тематических моделей.
+
* Модель битермов BTM (Biterm Topic Model) для тематизации коллекций коротких текстов.
 +
<!--* Модель всплесков BBTM (Bursty Biterm Topic Model). -->
 +
* Модели WNTM (Word Network Topic Model) и WTM (Word Topic Model). Связь с моделью word2vec.
 +
* Регуляризаторы когерентности.
-
'''Критерии качества классификации и ранжирования.'''
+
'''Дополнительный материал:'''
-
* Полнота, точность и F-мера в задачах классификации и ранжирования.
+
* ''Потапенко А. А.'' Векторные представления слов и документов. DataFest'4. [https://www.youtube.com/watch?v=KEXWC-ICH_Y '''Видео'''].
-
* Критерии качества ранжирования: MAP, DCG, NDCG.
+
-
* Оценка качества тематического поиска документов по их длинным фрагментам.
+
-
'''Задание 1.4.'''
+
== Анализ зависимостей ==
-
# Применить OEM к реальным коллекциям.
+
Презентация: [[Media:Voron23ptm-rel.pdf|(PDF,&nbsp;1,7&nbsp;МБ)]] {{важно|— обновление 06.12.2023}}.
-
# Исследовать на реальных данных зависимость внутренних и внешних критериев качества от эвристических параметров алгоритма обучения OEM.
+
[https://youtu.be/uKCMr9yK3gw?list=PLk4h7dmY2eYE_JjvexGUS5MSozoxDFovp Видеозапись]
-
# В экспериментах на реальных данных построить зависимости перплексии обучающей и контрольной коллекции от числа итераций и числа тем.
+
-
'''Литература:''' [Blei, 2003].
+
'''Зависимости, корреляции, связи.'''
 +
* Тематические модели классификации и регрессии.
 +
* Модель коррелированных тем CTM (Correlated Topic Model).
 +
* Регуляризаторы гиперссылок и цитирования. Выявление тематических влияний в научных публикациях.
-
===Робастные тематические модели===
+
'''Время и пространство.'''
-
''Робастность'' — устойчивость модели к нарушениям исходных предпосылок, заложенных в основу модели.
+
* Регуляризаторы времени.
 +
* Обнаружение и отслеживание тем.
 +
* Гео-пространственные модели.
-
'''Робастная тематическая модель с фоном и шумом'''
+
'''Социальные сети.'''
-
* Аналитическое решение задачи о стационарной точке функции Лагранжа, формулы M-шага.
+
* Сфокусированный поиск в социальных медиа (пример: поиск этно-релевантного контента).
-
* Аддитивный и мультипликативный М-шаг.
+
* Выявление тематических сообществ. Регуляризаторы для направленных и ненаправленных связей.
-
* Оценки тематичности слов.
+
* Регуляризаторы для выявления социальных ролей пользователей.
-
* Эксперименты: робастная модель не нуждается в регуляризации и более устойчива к разреживанию.
+
-
'''Разреженная робастная тематическая модель с шумом'''
+
== Мультимодальные тематические модели ==
-
* Максимизация правдоподобия для упрощённой робастной модели.
+
Презентация: [[Media:Voron23ptm-modal.pdf|(PDF,&nbsp;2,7&nbsp;МБ)]] {{важно|— обновление 06.12.2023}}.
-
* Вычисление перплексии для упрощённой робастной модели.
+
[https://youtu.be/AfwH0A3NJCQ?list=PLk4h7dmY2eYE_JjvexGUS5MSozoxDFovp Видеозапись]
-
'''Робастная тематическая модель с усечёнными распределениями'''
+
'''Мультиязычные тематические модели.'''
-
* Явления синонимии, взаимной заменяемости терминов, эффект burstiness.
+
* Параллельные и сравнимые коллекции.
-
* Гипотеза об усечённых распределениях терминов тем в документах как ослабление гипотезы условной независимости.
+
* Регуляризаторы для учёта двуязычных словарей.
-
* Аналитическое решение задачи о стационарной точке функции Лагранжа. Модификация ЕМ-алгоритма.
+
* Кросс-язычный информационный поиск.
-
'''Задание 1.5'''
+
'''Трёхматричные модели.'''
-
Обязательные пункты: 1,2 и любой из остальных.
+
* Модели трёхматричных разложений. Понятие порождающей модальности.
-
# Реализовать генерацию модельных данных с фоном и шумом.
+
* Автор-тематическая модель (author-topic model).
-
# Реализовать робастный алгоритм OEM.
+
* Модель для выделения поведений объектов в видеопотоке.
-
# Исследовать зависимость точности робастной модели и точности восстановления от параметров априорной вероятности фона и шума. Что происходит с точностью модели, когда эти параметры «плохо угаданы»?
+
-
# Исследовать возможность оптимизации параметров априорной вероятности шума и фона.
+
-
# Исследовать зависимость перплексии и качества поиска от априорной вероятности шума.
+
-
# Исследовать влияние разреживания тематической компоненты робастной модели на перплексию и качество поиска.
+
-
'''Литература:''' [Chemudugunta, 2006].
+
'''Тематические модели транзакционных данных.'''
 +
* Примеры транзакционных данных в рекомендательных системах, социальных и рекламных сетях.
 +
* Гиперграфовая модель ARTM. Теорема о необходимом условии максимума регуляризованного правдоподобия.
 +
* Транзакционные данные в рекомендательных системах. Симметризованная гиперграфовая модель ARTM.
 +
* Тематическая модель предложений и модель коротких сообщений Twitter-LDA.
 +
* Анализ транзакционных данных для выявления паттернов экономического поведения клиентов банка. '''[https://youtu.be/0q5p7xP4cdA?t=15168 Видео]'''.
 +
* Анализ банковских транзакционных данных для выявления видов деятельности компаний.
-
== Часть 2 ==
+
== Моделирование локального контекста ==
 +
Презентация: [[Media:Voron23ptm-segm.pdf|(PDF,&nbsp;2,2&nbsp;МБ)]] {{важно|— обновление 06.12.2023}}.
 +
[https://youtu.be/KHamaJ6Zf6o?list=PLk4h7dmY2eYE_JjvexGUS5MSozoxDFovp Видеозапись]
-
===Аддитивная регуляризация тематических моделей===
+
'''Тематическая сегментация.'''
-
* ''Напоминания''. Вероятностная тематическая модель. Принцип максимума правдоподобия. KL-дивергенция. PLSA. EM-алгоритм.
+
* Метод TopicTiling. Критерии определения границ сегментов.
 +
* Критерии качества сегментации.
 +
* Оптимизация параметров модели TopicTiling.
-
'''Тихоновская регуляризация.'''
+
'''Тематическое моделирование связного текста'''
-
* Некорректность постановки задачи тематического моделирования.
+
* Линейная тематизация текста за один проход без матрицы <tex>\Theta</tex>.
-
* Аддитивная регуляризация.
+
* Локализация E-шага. Сравнение с моделью внимания self-attention.
-
* Общая формула M-шага для регуляризованного ЕМ-алгоритма.
+
* Двунаправленная тематическая модель контекста.
-
* Концепция композитных многофункциональных тематических моделей.
+
-
'''Сглаживание и разреживание.'''
+
'''Позиционный регуляризатор в ARTM.'''
-
* Сглаживание. Альтернативное обоснование LDA через регуляризатор–дивергенцию.
+
* Гипотеза о сегментной структуре текста.
-
* Разреживание. Энтропийный регуляризатор.
+
* Регуляризация и пост-обработка Е-шага. Формулы М-шага.
-
* Частичное обучение как выборочное сглаживание.
+
* Примеры регуляризаторов Е-шага. Разреживание распределения p(t|d,w). Сглаживание тематики слов по контексту.
-
'''Ковариационные регуляризаторы.'''
+
== Именование и суммаризация тем ==
-
* Антиковариация тем.
+
Презентация: [[Media:Voron23ptm-sum.pdf|(PDF,&nbsp;4,3&nbsp;МБ)]] {{важно|— обновление 04.05.2024}}.
-
* Корреляция документов.
+
[https://youtu.be/nShxhkPbGWY Видеозапись]
-
* Тематические модели цитирования.
+
-
===Синтаксические тематические модели===
+
'''Методы суммаризации текстов.'''
 +
* Задачи автоматической суммаризации текстов. Подходы к суммаризации: extractive и abstractive.
 +
* Оценивание и отбор предложений для суммаризации. Релаксационный метод для многокритериальной дискретной оптимизации.
 +
* Тематическая модель предложений для суммаризации.
 +
* Критерии качества суммаризации. Метрики ROUGE, BLUE.
-
'''Энграммные модели.'''
+
'''Автоматическое именование тем (topic labeling).'''
-
* Задача выделения терминов как ключевых фраз (словосочетаний). Словари терминов.
+
* Формирование названий-кандидатов.
-
* Морфологический анализ текста.
+
* Релевантность, покрытие, различность.
-
* Синтаксический анализ текста. Выявление подчинительных связей.
+
* Оценивание качества именования тем.
-
* Статистические методы поиска коллокаций. Критерий C-Value.
+
-
* Совмещённый статистический критерий TF-IDF & CValue.
+
-
* Энграммный онлайновый алгоритм на основе синтаксического анализа и фильтрации терминов путём разреживания.
+
-
* Влияние выделения ключевых фраз на качество модели и интерпретируемость тем.
+
-
'''Марковские модели синтаксиса.'''
+
'''Задача суммаризации темы'''
-
* Коллокации
+
* Задача ранжирования документов
-
* Оценивание матрицы переходных вероятностей.
+
* Задача фильтрации репрезентативных релевантных фраз.
 +
* Задача генерации связного текста
-
===Регуляризация для задач классификации===
+
== Проект «Тематизатор» ==
-
* ''Напоминания''. Аддитивная регуляризация тематических моделей.
+
Презентация: [[Media:Voron23ptm-project.pdf|(PDF,&nbsp;6,2&nbsp;МБ)]] {{важно|— обновление 21.09.2023}}.
 +
[https://youtu.be/LctW1J93lmw?list=PLk4h7dmY2eYE_JjvexGUS5MSozoxDFovp Видеозапись]
-
'''Простейшие модели.'''
+
'''Визуализация тематических моделей'''
-
* Примеры классов: годы, авторы, категории, и т.д.
+
* Концепция distant reading.
-
* Моделирование классов темами.
+
* Карты знаний, иерархии, взаимосвязи, динамика, сегментация.
-
* Моделирование классов распределениями тем.
+
* Спектр тем.
-
* Автор-тематическая модель.
+
* Визуализация матричного разложения.
-
* Многоклассовые задачи. Частотный регуляризатор.
+
-
'''Тематическая модель классификации.'''
+
'''Примеры прикладных задач'''
-
* Тематическая модель распределения классов документа. Вероятностная интерпретация.
+
* Поиск этно-релевантных тем в социальных сетях.
-
* Тематическая модель цитирования документов.
+
* Анализ программ развития российских вузов.
-
* Тематическая модель цитирования авторов.
+
* Поиск и рубрикация научных статей на 100 языках.
-
* Тематическая модель категоризации. Ковариационный регуляризатор.
+
* Проекты Школы Прикладного Анализа Данных.
-
===Динамические тематические модели===
+
'''Анализ требований к «Тематизатору»'''
 +
* Функциональные требования.
 +
* Требования к интерпретируемости.
 +
* Основной пользовательский сценарий: Загрузка, Предобработка, Моделирование, Визуализация, Коррекция.
 +
* Этапизация работ.
-
'''Модели с дискретным временем.'''
+
=Отчетность по курсу=
-
* Модель с фиксированной тематикой.
+
Условием сдачи курса является выполнение индивидуальных практических заданий.
-
* Модель с медленно меняющейся тематикой.
+
-
'''Модели с непрерывным временем.'''
+
'''Рекомендуемая структура отчёта об исследовании:'''
 +
* Постановка задачи: неформальное описание, ДНК (дано–найти–критерий), структура данных
 +
* Описание простого решения baseline
 +
* Описание основного решения и его вариантов
 +
* Описание набора данных и методики экспериментов
 +
* Результаты экспериментов по подбору гиперпараметров основного решения
 +
* Результаты экспериментов по сравнению основного решения с baseline
 +
* Примеры визуализации модели
 +
* Выводы: что работает, что не работает, инсайты
 +
* Ссылка на код
-
===Иерархические тематические модели===
+
'''Примеры отчётов:'''
-
* Задачи категоризации текстов. Стандартный метод решения — сведение к последовательности задач классификации.
+
* [[Media:kibitova16ptm.pdf|Валерия Кибитова, 2016]]
 +
* [[Media:filin18ptm.pdf|Максим Филин, 2018]]
 +
* [[Media:ikonnikova18ptm.pdf|Мария Иконникова, 2018]]
-
'''Тематическая модель с фиксированной иерархией.'''
+
=Литература=
-
* Вероятностная формализация отношения «тема–подтема». Тождества, связывающие распределения тем и подтем
+
-
* Задача построения иерархического тематического профиля документа.
+
-
* Задача построения одного уровня иерархии. Аналитическое решение задачи максимизации правдоподобия, формулы M-шага.
+
-
* Онлайновый иерархический EM-алгоритм.
+
-
* Необходимость частичного обучения для задачи категоризации.
+
-
* Необходимость разреживания для построения иерархического тематического профиля документа.
+
-
'''Сетевые иерархические модели.'''
+
# ''Воронцов К. В.'' [[Media:voron17survey-artm.pdf|Вероятностное тематическое моделирование: теория регуляризации ARTM и библиотека с открытым кодом BigARTM]]. 2023.
-
* Возможность для темы иметь несколько родительских тем.
+
# ''Hamed Jelodar, Yongli Wang, Chi Yuan, Xia Feng.'' [https://arxiv.org/ftp/arxiv/papers/1711/1711.04305.pdf Latent Dirichlet Allocation (LDA) and Topic modeling: models, applications, a survey]. 2017.
-
* Дивергенция Кульбака–Лейблера. Свойства KL-дивергенции.
+
# ''Hofmann T.'' Probabilistic latent semantic indexing // Proceedings of the 22nd annual international ACM SIGIR conference on Research and development in information retrieval. — New York, NY, USA: ACM, 1999. — Pp. 50–57.
-
* Интерпретация KL-дивергенции как степени вложенности распределений. Оценивание силы связей «тема-подтема» KL-дивергенцией.
+
# ''Blei D. M., Ng A. Y., Jordan M. I.'' Latent Dirichlet allocation // Journal of Machine Learning Research. — 2003. — Vol. 3. — Pp. 993–1022.
-
* Дополнение тематического дерева до тематической сети.
+
# ''Asuncion A., Welling M., Smyth P., Teh Y. W.'' On smoothing and inference for topic models // Proceedings of the International Conference on Uncertainty in Artificial Intelligence. — 2009.
 +
<!--
 +
# ''Янина А. О., Воронцов К. В.'' [http://jmlda.org/papers/doc/2016/no2/Ianina2016Multimodal.pdf Мультимодальные тематические модели для разведочного поиска в коллективном блоге] // Машинное обучение и анализ данных. 2016. T.2. №2. С.173-186.
 +
# ''Воронцов К.В.'' Тематическое моделирование в BigARTM: теория, алгоритмы, приложения. [[Media:Voron-2015-BigARTM.pdf|Voron-2015-BigARTM.pdf]].
 +
# ''Воронцов К.В.'' Лекции по тематическому моделированию. [[Media:Voron-2013-ptm.pdf|Voron-2013-ptm.pdf]].
-
'''Иерархические процессы Дирихле.'''
+
'''Дополнительная литература'''
-
* Оптимизация числа тем в плоской модели.
+
-
* Создание новых тем в иерархических моделях.
+
-
* Нисходящие и восходящие иерархические модели.
+
-
 
+
-
===Многоязычные тематические модели===
+
-
* Параллельные тексты.
+
-
* Сопоставимые тексты.
+
-
* Регуляризация матрицы переводов слов.
+
-
 
+
-
===Многомодальные тематические модели===
+
-
* Коллаборативная фильтрация.
+
-
* Модель научной социальной сети.
+
-
* Персонализация рекламы в Интернете.
+
-
 
+
-
===Распараллеливание алгоритмов обучения тематических моделей===
+
-
* Основы Map-Reduce
+
-
* Распределённое хранение коллекции.
+
-
 
+
-
==Литература==
+
-
'''Основная литература'''
+
 +
# Воронцов К. В., Потапенко А. А. [http://jmlda.org/papers/doc/2013/no6/Vorontsov2013TopicModeling.pdf Модификации EM-алгоритма для вероятностного тематического моделирования] // Машинное обучение и анализ данных. — 2013. — T. 1, № 6. — С. 657–686.
 +
# Воронцов К. В., Фрей А. И., Ромов П. А., Янина А. О., Суворова М. А., Апишев М. А. [[Media:Voron15damdid.pdf|BigARTM: библиотека с открытым кодом для тематического моделирования больших текстовых коллекций]] // Аналитика и управление данными в областях с интенсивным использованием данных. XVII Международная конференция DAMDID/RCDL’2015, Обнинск, 13-16 октября 2015.
# Маннинг К., Рагхаван П., Шютце Х. Введение в информационный поиск. — Вильямс, 2011.
# Маннинг К., Рагхаван П., Шютце Х. Введение в информационный поиск. — Вильямс, 2011.
-
# Daud A., Li J., Zhou L., Muhammad F. Knowledge discovery through directed probabilistic topic models: a survey // Frontiers of Computer Science in China.— 2010.— Vol. 4, no. 2. — Pp. 280–301.
 
-
# Asuncion A., Welling M., Smyth P., Teh Y. W. On smoothing and inference for topic models // Proceedings of the International Conference on Uncertainty in Artificial Intelligence. — 2009.
 
-
 
-
'''Дополнительная литература'''
 
-
# Воронцов К. В., Потапенко А. А. Регуляризация, робастность и разреженность вероятностных тематических моделей // Компьютерные исследования и моделирование 2012 Т. 4, №12. С 693–706.
 
-
# Blei D. M., Ng A. Y., Jordan M. I. Latent Dirichlet allocation // Journal of Machine Learning Research. — 2003. — Vol. 3. — Pp. 993–1022.
 
# Chemudugunta C., Smyth P., Steyvers M. Modeling general and specific aspects of documents with a probabilistic topic model // Advances in Neural Information Processing Systems. — MIT Press, 2006. — Vol. 19. — Pp. 241–248.
# Chemudugunta C., Smyth P., Steyvers M. Modeling general and specific aspects of documents with a probabilistic topic model // Advances in Neural Information Processing Systems. — MIT Press, 2006. — Vol. 19. — Pp. 241–248.
 +
# Daud A., Li J., Zhou L., Muhammad F. Knowledge discovery through directed probabilistic topic models: a survey // Frontiers of Computer Science in China.— 2010.— Vol. 4, no. 2. — Pp. 280–301.
# Dempster A. P., Laird N. M., Rubin D. B. Maximum likelihood from incomplete data via the EM algorithm // J. of the Royal Statistical Society, Series B. — 1977. — no. 34. — Pp. 1–38.
# Dempster A. P., Laird N. M., Rubin D. B. Maximum likelihood from incomplete data via the EM algorithm // J. of the Royal Statistical Society, Series B. — 1977. — no. 34. — Pp. 1–38.
-
# Hofmann T. Probabilistic latent semantic indexing // Proceedings of the 22nd annual international ACM SIGIR conference on Research and development in information retrieval. — New York, NY, USA: ACM, 1999. — Pp. 50–57.
 
# Hoffman M. D., Blei D. M., Bach F. R. Online Learning for Latent Dirichlet Allocation // NIPS, 2010. Pp. 856–864.
# Hoffman M. D., Blei D. M., Bach F. R. Online Learning for Latent Dirichlet Allocation // NIPS, 2010. Pp. 856–864.
# Lu Y., Mei Q., Zhai C. Investigating task performance of probabilistic topic models: an empirical study of PLSA and LDA // Information Retrieval. — 2011. — Vol.14, no.2. — Pp. 178–203.
# Lu Y., Mei Q., Zhai C. Investigating task performance of probabilistic topic models: an empirical study of PLSA and LDA // Information Retrieval. — 2011. — Vol.14, no.2. — Pp. 178–203.
 +
# Vorontsov K. V., Potapenko A. A. [[Media:Voron14mlj.pdf|Additive Regularization of Topic Models]] // Machine Learning. Special Issue “Data Analysis and Intelligent Optimization with Applications”: Volume 101, Issue 1 (2015), Pp. 303-323. [[Media:Voron14mlj-rus.pdf|Русский перевод]]
 +
# Vorontsov K. V., Frei O. I., Apishev M. A., Romov P. A., Suvorova M. A., Yanina A. O. [[Media:Voron15cikm-tm.pdf|Non-Bayesian Additive Regularization for Multimodal Topic Modeling of Large Collections]] // Proceedings of the 2015 Workshop on Topic Models: Post-Processing and Applications, October 19, 2015, Melbourne, Australia. ACM, New York, NY, USA. pp. 29–37.
# Wallach H., Mimno D., McCallum A. Rethinking LDA: Why priors matter // Advances in Neural Information Processing Systems 22 / Ed. by Y. Bengio, D. Schuurmans, J. Lafferty, C. K. I. Williams, A. Culotta. — 2009. — Pp. 1973–1981.
# Wallach H., Mimno D., McCallum A. Rethinking LDA: Why priors matter // Advances in Neural Information Processing Systems 22 / Ed. by Y. Bengio, D. Schuurmans, J. Lafferty, C. K. I. Williams, A. Culotta. — 2009. — Pp. 1973–1981.
-
# Zavitsanos E., Paliouras G., Vouros G. A. Non-parametric estimation of topic hierarchies from texts with hierarchical Dirichlet processes // Journal of Machine Learning Research. — 2011. — Vol. 12. — Pp. 2749–2775.
+
-->
-
== Ссылки ==
+
= Ссылки =
* [[Тематическое моделирование]]
* [[Тематическое моделирование]]
-
* Конспект лекций: [[Media:Voron-2013-ptm.pdf|Voron-2013-ptm.pdf, 2.6 МБ]] {{важно|(обновление 16 октября 2013)}}.
+
* [[Аддитивная регуляризация тематических моделей]]
-
* Презентация доклада на семинаре в [http://www2.viniti.ru ВИНИТИ РАН], 23 апреля 2013. '''[[Media:voron-viniti-23apr2013.pdf|(PDF,&nbsp;2.0&nbsp;МБ)]]'''.
+
-
 
+
-
== См. также ==
+
* [[Коллекции документов для тематического моделирования]]
* [[Коллекции документов для тематического моделирования]]
 +
* [[BigARTM]]
 +
* [http://www.youtube.com/watch?v=vSzsuq7uHPE Видеозапись лекции на ТМШ, 19 июня 2015]
 +
* ''Воронцов К.В.'' [[Media:voron-2014-task-PTM.pdf|Практическое задание по тематическому моделированию, 2014.]]
-
{{Stub}}
+
'''Материалы для первого ознакомления:'''
 +
* ''[[Media:BigARTM-short-intro.pdf|Тематический анализ больших данных]]''. Краткое популярное введение в BigARTM.
 +
* ''[http://postnauka.ru/video/61910 Разведочный информационный поиск]''. Видеолекция на ПостНауке.
 +
* ''[https://postnauka.ru/faq/86373 Тематическое моделирование]''. FAQ на ПостНауке, совместно с Корпоративным университетом Сбербанка.
 +
* ''[https://www.youtube.com/watch?v=MhNbccnVk5Y Байесовская и классическая регуляризация в вероятностном тематическом моделировании]''. Научно-образовательный семинар «Актуальные проблемы прикладной математики» Новосибирского Государственного Университета, 19 февраля 2021. [[Media:Voron-2021-02-19.pdf|Презентация]].
 +
* ''[https://habrahabr.ru/company/yandex/blog/313340 Тематическое моделирование на пути к разведочному информационному поиску]''. Лекция на DataFest3, 10 сентября 2016. [https://www.youtube.com/watch?v=frLW8UVp_Ik&index=5&list=PLJOzdkh8T5kqfhWXhtYevTUHIvrylDLYu Видеозапись].
 +
 
 +
= Подстраницы =
 +
{{Служебная:Prefixindex/Вероятностные тематические модели (курс лекций, К.В.Воронцов)/}}
[[Категория:Учебные курсы]]
[[Категория:Учебные курсы]]
 +
 +
 +
<!---------------------------------------------------
 +
 +
'''Модели связного текста.'''
 +
* Контекстная документная кластеризация (CDC).
 +
* Метод лексических цепочек.
 +
 +
'''Инициализация.'''
 +
* Случайная инициализация. Инициализация по документам.
 +
* Контекстная документная кластеризация.
 +
* Поиск якорных слов. Алгоритм Ароры.
 +
 +
'''Расширяемые тематические модели.'''
 +
* Пакетный ЕМ-алгоритм.
 +
* Обнаружение новых тем в потоке документов. Инициализация новых тем.
 +
* Проблемы агрегирования коллекций. Жанровая и тематическая фильтрация документов.
 +
 +
== Анализ разнородных данных ==
 +
Презентация: [[Media:Voron18ptm-misc.pdf|(PDF,&nbsp;1,6&nbsp;МБ)]] {{важно|— обновление 03.05.2018}}.
 +
 +
== Примеры приложений тематического моделирования ==
 +
Презентация: [[Media:Voron17ptm11.pdf|(PDF,&nbsp;3,3&nbsp;МБ)]] {{важно|— обновление 16.05.2017}}.
 +
 +
'''Примеры приложений тематического моделирования.'''
 +
* Задача поиска релевантных тем в социальных сетях и новостных потоках.
 +
* Динамическая модель коллекции пресс-релизов.
 +
* Разведочный поиск в коллективном блоге.
 +
* Сценарный анализ записей разговоров контактного центра.
 +
* [[Технология информационного анализа электрокардиосигналов|Информационный анализ электрокардиосигналов]] для скрининговой диагностики.
 +
 +
== Инициализация, траектория регуляризации, тесты адекватности ==
 +
Презентация: [[Media:Voron-PTM-10.pdf|(PDF,&nbsp;Х,Х&nbsp;МБ)]] {{важно|— обновление ХХ.ХХ.2016}}.
 +
 +
'''Траектория регуляризации.'''
 +
* Задача оптимизации трактории в пространстве коэффициентов регуляризации.
 +
* Относительные коэффициенты регуляризации.
 +
* Пространство коэффициентов регуляризации и пространство метрик качества. Регрессионная связь между ними. Инкрементная регрессия.
 +
* Подходы к скаляризации критериев.
 +
* Обучение с подкреплением. Контекстный многорукий бандит. Верхние доверительные границы (UCB).
 +
 +
'''Тесты адекватности.'''
 +
* Статистические тесты условной независимости. Методология проверки статистических гипотез. Критерий согласия хи-квадрат Пирсона.
 +
* Проблема разреженности распределения. Эксперименты, показывающие неадекватность асимптотического распределения статистики хи-квадрат.
 +
* Статистики модифицированного хи-квадрат, Кульбака-Лейблера, Хеллингера.
 +
* Обобщённое семейство статистик Кресси-Рида.
 +
* Эмпирическое оценивание квантилей распределения статистики Кресси-Рида.
 +
* Применения теста условной независимости для поиска плохо смоделированных тем, документов, терминов. Поиск тем для расщепления.
 +
 +
== Обзор оценок качества тематических моделей ==
 +
Презентация: [[Media:Voron-PTM-11.pdf|(PDF,&nbsp;Х,Х&nbsp;МБ)]] {{важно|— обновление ХХ.ХХ.2016}}.
 +
 +
* Внутренние и внешние критерии качества.
 +
* Перплексия и правдоподобие. Интерпретация перплекcии. Перплексия контрольной коллекции. Проблема новых слов в контрольной коллекции. Проблема сравнения моделей с разными словарями. Относительная перплексия.
 +
 +
''' Оценивание качества темы.'''
 +
* Лексическое ядро темы: множество типичных терминов темы.
 +
* Чистота и контрастность темы
 +
* Документное ядро темы: множество типичных документов темы.
 +
* Однородность темы: распределение расстояний между p(w|t) и p(w|t,d).
 +
* Конфликтность темы: близость темы к другим темам.
 +
* Интерпретируемость темы: экспертные оценки, метод интрузий, когерентность. Взрыв интерпретируемости в n-граммных моделях.
 +
 +
'''Устойчивость и полнота.'''
 +
* Эксперименты по оцениванию устойчивости, интерпретируемости и полноты.
 +
* Построение выпуклых оболочек тем и фильтрация зависимых тем в сериях тематических моделей.
 +
 +
'''Критерии качества классификации и ранжирования.'''
 +
* Полнота, точность и F-мера в задачах классификации и ранжирования.
 +
* Критерии качества ранжирования: MAP, DCG, NDCG.
 +
* Оценка качества тематического поиска документов по их длинным фрагментам.
 +
 +
* Вывод M-шага для негладкого регуляризатора.
 +
* Тематическая модель текста и изображений. Задача аннотирования изображений.
 +
-->

Текущая версия

Содержание

Спецкурс читается студентам 2—5 курсов на кафедре «Математические методы прогнозирования» ВМиК МГУ с 2013 года и студентам 6 курса на кафедре «Интеллектуальные системы» ФУПМ МФТИ с 2019 года.

В спецкурсе изучается вероятностное тематическое моделирование (topic modeling) коллекций текстовых документов. Тематическая модель определяет, какие темы содержатся в большой текстовой коллекции, и к каким темам относится каждый документ. Тематические модели позволяют искать тексты по смыслу, а не по ключевым словам, и создавать информационно-поисковые системы нового поколения, основанные на парадигме семантического разведочного поиска (exploratory search). Рассматриваются тематические модели для классификации, категоризации, сегментации, суммаризации текстов естественного языка, а также для рекомендательных систем, анализа банковских транзакционных данных, анализа биомедицинских сигналов. В спецкурсе развивается многокритериальный подход к построению моделей с заданными свойствами — аддитивная регуляризация тематических моделей (АРТМ). Он основан на регуляризации некорректно поставленных задач стохастического матричного разложения. Особое внимание уделяется методам лингвистической регуляризации для моделирования связности текста. Предполагается проведение студентами численных экспериментов на модельных и реальных данных с помощью библиотеки тематического моделирования BigARTM.

От студентов требуются знания курсов линейной алгебры, математического анализа, теории вероятностей. Знание математической статистики, методов оптимизации, машинного обучения, языков программирования Python и С++ желательно, но не обязательно.

Краткая ссылка на эту страницу: bit.ly/2EGWcjA.

Основной материал:

Программа курса

Задача тематического моделирования

Презентация: (PDF, 1,4 МБ) — обновление 19.09.2024. Видеозапись

Цели и задачи тематического моделирования.

Аддитивная регуляризация тематических моделей.

  • Понятие некорректно поставленной задачи по Адамару. Регуляризация.
  • Лемма о максимизации на единичных симплексах. Условия Каруша–Куна–Таккера.
  • Теорема о необходимом условии максимума регуляризованного правдоподобия для ARTM.
  • Классические тематические модели PLSA и LDA как частные случаи ARTM.

Практика тематического моделирования.

  • Проект с открытым кодом BigARTM.
  • Этапы решения практических задач.
  • Методы предварительной обработки текста.
  • Датасеты и практические задания по курсу.

Онлайновый ЕМ-алгоритм и аддитивная регуляризация

Презентация: (PDF, 1,3 МБ) — обновление 03.10.2024. Видеозапись 2022 г. Дополнение: Видеозапись 2023 г.

Часто используемые регуляризаторы.

  • Сглаживание и разреживание.
  • Частичное обучение.
  • Декоррелирование тем.
  • Разреживание для отбора тем.

Онлайновый ЕМ-алгоритм.

  • Рациональный ЕМ-алгоритм (встраивание Е-шага внутрь М-шага).
  • Оффлайновый регуляризованный EM-алгоритм.
  • Улучшение сходимости несмещёнными оценками.
  • Подбор коэффициентов регуляризации.
  • Относительные коэффициенты регуляризации.
  • Библиотеки BigARTM и TopicNet.

Эксперименты с регуляризацией.

  • Производительность BigARTM
  • Оценивание качества: перплексия, когерентность, лексическое ядро
  • Регуляризаторы сглаживания, разреживания, декоррелирования и отбора тем.
  • Комбинирование регуляризаторов, эмпирические рекомендации.

Тематический информационный поиск

Презентация: (PDF, 4,8 МБ) — обновление 10.10.2024. Видеозапись

Мультимодальные тематические модели.

  • Примеры модальностей.
  • Мультимодальный ARTM и регуляризованный ЕМ-алгоритм.

Иерархические тематические модели.

  • Иерархии тем. Послойное построение иерархии.
  • Регуляризаторы для разделения тем на подтемы.
  • Псевдодокументы родительских тем.
  • Модальность родительских тем.

Эксперименты с тематическим поиском.

  • Методика измерения качества поиска.
  • Тематическая модель для документного поиска.
  • Оптимизация гиперпараметров.

Проект «Мастерская знаний»

  • Поисково-рекомендательная система SciSearch.ru
  • Векторный поиск для формирования тематических подборок
  • Требования к тематическим моделям для научного информационного поиска

Оценивание качества тематических моделей

Презентация: (PDF, 1,6 МБ) — обновление 17.10.2024. Видеозапись

Измерение качества тематических моделей.

  • Правдоподобие и перплексия.
  • Интерпретируемость и когерентность. Внутритекстовая когерентность.
  • Разреженность и различность.

Проверка гипотезы условной независимости.

  • Статистики на основе KL-дивергенции и их обобщения.
  • Регуляризатор семантической однородности.
  • Применение статистических тестов условной независимости.

Проблема определения числа тем.

  • Разреживающий регуляризатор для отбора тем.
  • Эксперименты на синтетических и реальных данных.
  • Сравнение с байесовской моделью HDP (Hierarchical Dirichlet Process).
  • Эффект отбрасывания малых, дублирующих и линейно зависимых тем.

Проблема тематической несбалансированности в данных

  • Проблема малых тем и тем-дубликатов
  • Тематическая несбалансированность как основная причина неинтерпретируемости тем
  • Эксперименты с регуляризаторами отбора тем и декоррелирования
  • Регуляризатор семантической однородности

BigARTM и базовые инструменты

Мурат Апишев. Презентация: (zip, 0,6 МБ) — обновление 17.02.2017. Видеозапись

Предварительная обработка текстов

  • Парсинг «сырых» данных.
  • Токенизация, стемминг и лемматизация.
  • Выделение энграмм.
  • Законы Ципфа и Хипса. Фильтрация словаря коллекции. Удаление стоп-слов.

Библиотека BigARTM

  • Методологические рекоммендации по проведению экспериментов.
  • Установка BigARTM.
  • Формат и импорт входных данных.
  • Обучение простой модели (без регуляризации): создание, инициализация, настройка и оценивание модели.
  • Инструмент визуализации тематических моделей VisARTM. Основные возможности, демонстрация работы.

Дополнительный материал:

  • Презентация: (PDF, 1,5 МБ) — обновление 17.03.2017.
  • Видео — обновление 22.03.2017.
  • Воркшоп по BigARTM на DataFest'4. Видео.

Теория ЕМ-алгоритма

Презентация: (PDF, 2,0 МБ) — обновление 25.10.2024. Видеозапись

Классические модели PLSA, LDA.

  • Модель PLSA.
  • Модель LDA. Распределение Дирихле и его свойства.
  • Максимизация апостериорной вероятности для модели LDA.

Общий EM-алгоритм.

  • EM-алгоритм для максимизации неполного правдоподобия.
  • Регуляризованный EM-алгоритм. Сходимость в слабом смысле.
  • Альтернативный вывод формул ARTM.

Эксперименты с моделями PLSA, LDA.

  • Проблема неустойчивости (на синтетических данных).
  • Проблема неустойчивости (на реальных данных).
  • Проблема переобучения и робастные модели.

Байесовское обучение модели LDA

Презентация: (PDF, 1,7 МБ) — обновление 25.10.2024. Видеозапись

Вариационный байесовский вывод.

Сэмплирование Гиббса.

Замечания о байесовском подходе.

  • Оптимизация гиперпараметров в LDA.
  • Графическая нотация (plate notation). Stop using plate notation.
  • Сравнение байесовского подхода и ARTM.
  • Как читать статьи по баейсовским моделям и строить эквивалентные ARTM-модели.

Тематические модели сочетаемости слов

Презентация: (PDF, 1,7 МБ) — обновление 06.12.2023. Видеозапись

Мультиграммные модели.

  • Модель BigramTM.
  • Модель Topical N-grams (TNG).
  • Мультимодальная мультиграммная модель.

Автоматическое выделение терминов.

  • Алгоритм TopMine для быстрого поиска частых фраз. Критерии выделения коллокаций.
  • Синтаксический разбор. Нейросетевые синтаксические анализаторы SyntaxNet, UDpipe.
  • Критерии тематичности фраз.
  • Комбинирование синтаксической, статистической и тематической фильтрации фраз.

Тематические модели дистрибутивной семантики.

  • Дистрибутивная гипотеза. Модели CBOW и SGNS в программе word2vec.
  • Модель битермов BTM (Biterm Topic Model) для тематизации коллекций коротких текстов.
  • Модели WNTM (Word Network Topic Model) и WTM (Word Topic Model). Связь с моделью word2vec.
  • Регуляризаторы когерентности.

Дополнительный материал:

  • Потапенко А. А. Векторные представления слов и документов. DataFest'4. Видео.

Анализ зависимостей

Презентация: (PDF, 1,7 МБ) — обновление 06.12.2023. Видеозапись

Зависимости, корреляции, связи.

  • Тематические модели классификации и регрессии.
  • Модель коррелированных тем CTM (Correlated Topic Model).
  • Регуляризаторы гиперссылок и цитирования. Выявление тематических влияний в научных публикациях.

Время и пространство.

  • Регуляризаторы времени.
  • Обнаружение и отслеживание тем.
  • Гео-пространственные модели.

Социальные сети.

  • Сфокусированный поиск в социальных медиа (пример: поиск этно-релевантного контента).
  • Выявление тематических сообществ. Регуляризаторы для направленных и ненаправленных связей.
  • Регуляризаторы для выявления социальных ролей пользователей.

Мультимодальные тематические модели

Презентация: (PDF, 2,7 МБ) — обновление 06.12.2023. Видеозапись

Мультиязычные тематические модели.

  • Параллельные и сравнимые коллекции.
  • Регуляризаторы для учёта двуязычных словарей.
  • Кросс-язычный информационный поиск.

Трёхматричные модели.

  • Модели трёхматричных разложений. Понятие порождающей модальности.
  • Автор-тематическая модель (author-topic model).
  • Модель для выделения поведений объектов в видеопотоке.

Тематические модели транзакционных данных.

  • Примеры транзакционных данных в рекомендательных системах, социальных и рекламных сетях.
  • Гиперграфовая модель ARTM. Теорема о необходимом условии максимума регуляризованного правдоподобия.
  • Транзакционные данные в рекомендательных системах. Симметризованная гиперграфовая модель ARTM.
  • Тематическая модель предложений и модель коротких сообщений Twitter-LDA.
  • Анализ транзакционных данных для выявления паттернов экономического поведения клиентов банка. Видео.
  • Анализ банковских транзакционных данных для выявления видов деятельности компаний.

Моделирование локального контекста

Презентация: (PDF, 2,2 МБ) — обновление 06.12.2023. Видеозапись

Тематическая сегментация.

  • Метод TopicTiling. Критерии определения границ сегментов.
  • Критерии качества сегментации.
  • Оптимизация параметров модели TopicTiling.

Тематическое моделирование связного текста

  • Линейная тематизация текста за один проход без матрицы \Theta.
  • Локализация E-шага. Сравнение с моделью внимания self-attention.
  • Двунаправленная тематическая модель контекста.

Позиционный регуляризатор в ARTM.

  • Гипотеза о сегментной структуре текста.
  • Регуляризация и пост-обработка Е-шага. Формулы М-шага.
  • Примеры регуляризаторов Е-шага. Разреживание распределения p(t|d,w). Сглаживание тематики слов по контексту.

Именование и суммаризация тем

Презентация: (PDF, 4,3 МБ) — обновление 04.05.2024. Видеозапись

Методы суммаризации текстов.

  • Задачи автоматической суммаризации текстов. Подходы к суммаризации: extractive и abstractive.
  • Оценивание и отбор предложений для суммаризации. Релаксационный метод для многокритериальной дискретной оптимизации.
  • Тематическая модель предложений для суммаризации.
  • Критерии качества суммаризации. Метрики ROUGE, BLUE.

Автоматическое именование тем (topic labeling).

  • Формирование названий-кандидатов.
  • Релевантность, покрытие, различность.
  • Оценивание качества именования тем.

Задача суммаризации темы

  • Задача ранжирования документов
  • Задача фильтрации репрезентативных релевантных фраз.
  • Задача генерации связного текста

Проект «Тематизатор»

Презентация: (PDF, 6,2 МБ) — обновление 21.09.2023. Видеозапись

Визуализация тематических моделей

  • Концепция distant reading.
  • Карты знаний, иерархии, взаимосвязи, динамика, сегментация.
  • Спектр тем.
  • Визуализация матричного разложения.

Примеры прикладных задач

  • Поиск этно-релевантных тем в социальных сетях.
  • Анализ программ развития российских вузов.
  • Поиск и рубрикация научных статей на 100 языках.
  • Проекты Школы Прикладного Анализа Данных.

Анализ требований к «Тематизатору»

  • Функциональные требования.
  • Требования к интерпретируемости.
  • Основной пользовательский сценарий: Загрузка, Предобработка, Моделирование, Визуализация, Коррекция.
  • Этапизация работ.

Отчетность по курсу

Условием сдачи курса является выполнение индивидуальных практических заданий.

Рекомендуемая структура отчёта об исследовании:

  • Постановка задачи: неформальное описание, ДНК (дано–найти–критерий), структура данных
  • Описание простого решения baseline
  • Описание основного решения и его вариантов
  • Описание набора данных и методики экспериментов
  • Результаты экспериментов по подбору гиперпараметров основного решения
  • Результаты экспериментов по сравнению основного решения с baseline
  • Примеры визуализации модели
  • Выводы: что работает, что не работает, инсайты
  • Ссылка на код

Примеры отчётов:

Литература

  1. Воронцов К. В. Вероятностное тематическое моделирование: теория регуляризации ARTM и библиотека с открытым кодом BigARTM. 2023.
  2. Hamed Jelodar, Yongli Wang, Chi Yuan, Xia Feng. Latent Dirichlet Allocation (LDA) and Topic modeling: models, applications, a survey. 2017.
  3. Hofmann T. Probabilistic latent semantic indexing // Proceedings of the 22nd annual international ACM SIGIR conference on Research and development in information retrieval. — New York, NY, USA: ACM, 1999. — Pp. 50–57.
  4. Blei D. M., Ng A. Y., Jordan M. I. Latent Dirichlet allocation // Journal of Machine Learning Research. — 2003. — Vol. 3. — Pp. 993–1022.
  5. Asuncion A., Welling M., Smyth P., Teh Y. W. On smoothing and inference for topic models // Proceedings of the International Conference on Uncertainty in Artificial Intelligence. — 2009.

Ссылки

Материалы для первого ознакомления:

Подстраницы

Вероятностные тематические модели (курс лекций, К.В.Воронцов)/2015Вероятностные тематические модели (курс лекций, К.В.Воронцов)/2016Вероятностные тематические модели (курс лекций, К.В.Воронцов)/2017
Вероятностные тематические модели (курс лекций, К.В.Воронцов)/2018Вероятностные тематические модели (курс лекций, К.В.Воронцов)/2019, ВМКВероятностные тематические модели (курс лекций, К.В.Воронцов)/2020
Вероятностные тематические модели (курс лекций, К.В.Воронцов)/2021
Личные инструменты