Алгоритм LOWESS
Материал из MachineLearning.
(→Литература) |
(→Постановка задачи) |
||
Строка 7: | Строка 7: | ||
=== Постановка задачи === | === Постановка задачи === | ||
- | :Решается задача восстановления регрессии. Задано пространство объектов <tex>X</tex> и множество возможных | + | :Данная методика была предложена Кливлендом(Cleveland) в 1979 году для моделирования и сглаживания двумерных данных |
+ | <tex> X^m={(x_i, y_i)}_{i=1}^m</tex>. Эта техника предоставляет общий и гибкий подход для восстановления двумерных данных. | ||
+ | |||
+ | :Локально линейная модель loess(lowess) можеть быть записана в виде: | ||
+ | ::<tex> y_t=\alpha_t+\beta_t x_t + \varepsilon_t.</tex> | ||
+ | |||
+ | Решается задача восстановления регрессии. Задано пространство объектов <tex>X</tex> и множество возможных | ||
ответов <tex>Y=R</tex>. Существует неизвестная целевая зависимость <tex> y^*: X \rightarrow Y</tex>, | ответов <tex>Y=R</tex>. Существует неизвестная целевая зависимость <tex> y^*: X \rightarrow Y</tex>, | ||
- | значения которой известны только на объектах обучающей выборки | + | значения которой известны только на объектах обучающей выборки . |
Требуется построить алгоритм <tex>a: X \rightarrow Y </tex>, аппроксимирующий целевую зависимость <tex>y^*</tex>. | Требуется построить алгоритм <tex>a: X \rightarrow Y </tex>, аппроксимирующий целевую зависимость <tex>y^*</tex>. | ||
Версия 16:52, 4 января 2010
Статья плохо доработана. |
Алгоритм LOWESS (locally weighted scatter plot smoothing) - локально взвешенное сглаживание.
Содержание |
Постановка задачи
- Данная методика была предложена Кливлендом(Cleveland) в 1979 году для моделирования и сглаживания двумерных данных
. Эта техника предоставляет общий и гибкий подход для восстановления двумерных данных.
- Локально линейная модель loess(lowess) можеть быть записана в виде:
Решается задача восстановления регрессии. Задано пространство объектов и множество возможных ответов . Существует неизвестная целевая зависимость , значения которой известны только на объектах обучающей выборки . Требуется построить алгоритм , аппроксимирующий целевую зависимость .
Непараметрическая регрессия
- Непараметрическое восстановление регрессии основано на идее, что значение вычисляется
для каждого объекта по нескольким ближайшим к нему объектам обучающей выборки.
В формуле Надарая–Ватсона для учета близости объектов обучающей выборки к объекту предлагалось использовать невозрастающую, гладкую, ограниченную функцию , называемую ядром:
Параметр называется шириной ядра или шириной окна сглаживания. Чем меньше , тем быстрее будут убывать веса по мере удаления от . В общем случае зависит от объекта , т.е. . Тогда веса вычисляются по формуле
Оптимизация ширины окна
Чтобы оценить при данном и точность локальной аппроксимации в точке , саму эту точку необходимо исключить из обучающей выборки. Если этого не делать, минимум ошибки будет достигаться при . Такой способ оценивания оптимальной ширины окна называется скользящим контролем с исключением объектов по одному (leave-one-out, LOO):
Проблема выбросов
- Оценка Надарайя–Ватсона
крайне чувствительна к большим одиночным выбросам. На практике легко идентифицируются только грубые ошибки, возникающие, например, в результате сбоя оборудования или невнимательности персонала при подготовке данных. В общем случае можно лишь утверждать, что чем больше величина ошибки
тем в большей степени прецедент является выбросом , и тем меньше должен быть его вес. Эти соображения приводят к идее домножить веса на коэффициенты , где — ещё одно ядро, вообще говоря, отличное от .
Алгоритм LOWESS
Вход
- обучающая выборка;
весовые функции;
Выход
Коэффициенты
Алгоритм
- 1: инициализация
- 2: повторять
- 3: вычислить оценки скользящего контроля на каждом объекте:
- 4: вычислить новые значения коэффициентов :
- ;
- 5: пока коэффициенты не стабилизируются
Коэффициенты , как и ошибки , зависят от функции , которая, в свою очередь, зависит от . На каждой итерации строится функция , затем уточняются весовые множители . Как правило, этот процесс сходится довольно быстро. Он называется локально взвешенным сглаживанием (locally weighted scatter plot smoothing, LOWESS).
Выбор ядра
- В качестве ядра большинство практических источников рекомендуют использовать следующее:
Пусть - есть медиана коэффициентов , тогда , где
Более простой вариант, состоит в отбросе коэффициентов, соответствующих объектам с максимальными . Это соотвествует ядру
где –- - тый член вариационного ряда
Примеры применения
Литература
- Воронцов К.В. Лекции по алгоритмам восстановления регрессии. — 2007.
- A.I. McLeod Statistics 259b Robust Loess: S lowess. — 2004.
- John A Berger, Sampsa Hautaniemi, Anna-Kaarina Järvinen, Henrik Edgren, Sanjit K Mitra and Jaakko Astola Optimized LOWESS normalization parameter selection for DNA microarray data. — BMC Bioinformatics, 2004.
См. также
- Непараметрическая регрессия
- Регрессионный анализ
- Local regression
- Расин, Джеффри (2008) «Непараметрическая эконометрика: вводный курс», Квантиль, №4, стр. 7–56.
Данная статья является непроверенным учебным заданием.
До указанного срока статья не должна редактироваться другими участниками проекта MachineLearning.ru. По его окончании любой участник вправе исправить данную статью по своему усмотрению и удалить данное предупреждение, выводимое с помощью шаблона {{Задание}}. См. также методические указания по использованию Ресурса MachineLearning.ru в учебном процессе. |
→