Коэффициент корреляции Спирмена
Материал из MachineLearning.
(→Связь коэффициента корреляции Спирмена с коэффициентом корреляции Пирсона) |
м (оформление) |
||
(4 промежуточные версии не показаны) | |||
Строка 1: | Строка 1: | ||
{{TOCright}} | {{TOCright}} | ||
+ | |||
+ | '''Коэффициент корреляции Спирмена''' (Spearman rank correlation coefficient) — мера линейной связи между случайными величинами. Корреляция Спирмена является [[Ранговая корреляция|ранговой]], то есть для оценки силы связи используются не численные значения, а соответствующие им ранги. Коэффициент инвариантен по отношению к любому монотонному преобразованию шкалы измерения. | ||
+ | |||
==Определение== | ==Определение== | ||
Заданы две выборки <tex>x = (x_1,\ldots,x_n),\;\; y = (y_1,\ldots,y_n)</tex>. | Заданы две выборки <tex>x = (x_1,\ldots,x_n),\;\; y = (y_1,\ldots,y_n)</tex>. | ||
- | + | '''Вычисление корреляции Спирмена:''' | |
- | : | + | |
- | + | ||
- | + | ||
- | + | Коэффициент корреляции Спирмена вычисляется по формуле: | |
- | + | :<tex>\rho=1-\frac{6}{n(n-1)(n+1)}\sum_{i=1}^n(R_i-S_i)^2</tex>,<ref>Лагутин М. Б. Наглядная математическая статистика. — 343 с.</ref> где <tex>R_i</tex> - ранг наблюдения <tex>x_i</tex> в ряду <tex>x</tex>, <tex>S_i</tex> - ранг наблюдения <tex>y_i</tex> в ряду <tex>y</tex>. | |
- | + | ||
- | + | Коэффициент <tex>\rho</tex> принимает значения из отрезка <tex>[-1;\;1]</tex>. Равенство <tex>\rho=1</tex> указывает на строгую прямую линейную зависимость, <tex>\rho=-1</tex> на обратную. | |
- | + | ||
- | + | ||
- | + | '''Случай совпадающих наблюдений:''' | |
+ | |||
+ | При наличии [[Вариационный ряд|связок]] коэффициент корреляции Спирмена следует вычислять следующим образом: | ||
+ | |||
+ | :<tex>\rho = \frac{\sum_{i=1}^n{(R_i-(n+1)/2)(S_i-(n+1)/2)}}{n(n-1)(n+1)-\Delta},</tex><ref>Лапач С. Н. Статистика в науке и бизнесе. — 182 с.</ref> | ||
+ | :где <tex>\Delta=\frac{1}{2}\sum_{l=1}^q{u_i^x((u_i^x)^2-1)+\frac{1}{2}\sum_{i=1}^{f}{u_i^y((u_i^y)^2-1)}}</tex>. | ||
+ | :Здесь <tex>q</tex> и <tex>f</tex> — количество связок в выборках <tex>x</tex> и <tex>y</tex>, <tex>u^x_1, \ldots, u^x_q</tex>, <tex>u^y_1, \ldots, u^y_f</tex> — их размеры. Для элементов связок вычисляется [[Вариационный ряд|средний ранг]]. | ||
+ | |||
+ | '''Обоснование критерия Спирмена:''' | ||
+ | |||
+ | Статистикой критерия Спирмена служит [[Коэффициент корреляции Пирсона|коэффициент корреляции Пирсона]] <tex>\rho</tex> ранговых наборов <tex>(R_1 \ldots R_n)</tex> и <tex>(S_1 \ldots S_n)</tex>. Он определяется следующей формулой: | ||
+ | |||
+ | :<tex>\rho = \sum_{i=1}^n(R_i-\bar R)(S_i-\bar S) \left/ \left[ \sum_{i=1}^n(R_i-\bar R)^2 \sum_{i=1}^n(S_i-\bar S)^2 \right] ^ {1/2}.</tex> В этой формуле <tex>\bar R = \bar S = \frac1n\sum_{i=1}^n i = \frac{n+1}{2}</tex>. | ||
+ | |||
+ | Воспользовавшись тем, что <tex>\sum_{i=1}^ni^2 = \frac{n(n+1)(2n+1}{6}</tex>, получим: | ||
+ | :<tex>\sum_{i=1}^n(R_i-\bar R)^2 = \sum_{i=1}^n(S_i-\bar S)^2 = \sum_{i=1}^n\left( i - \frac{n+1}{2} \right)^2 = \frac{n(n-1)(n+1)}{12}</tex>. | ||
+ | |||
+ | Переставив пары <tex>(R_i,\ S_i)</tex> в порядке возрастания первой компоненты, получим набор <tex>(1,\ T_1) \ldots (n,\ T_n)</tex>. Тогда перепишем коэффициент корреляции Спирмена в виде: | ||
+ | :<tex>\rho = \frac{12}{n(n-1)(n+1)}\sum_{i=1}^n \left( i - \frac{n+1}{2} \right) \left( T_i - \frac{n+1}{2} \right)</tex>. | ||
+ | |||
+ | Таким образом, <tex>\rho</tex> - линейная функция от рангов <tex>T_i</tex>. Правую часть равенства можно представить в следующем виде:<ref>Лагутин М. Б. Наглядная математическая статистика. — 354 с., задача 3.</ref> | ||
+ | |||
+ | :<tex>\rho = 1 - \frac{6}{n(n-1)(n+1)}\sum_{i=1}^n(i - T_i)^2 = 1 - \frac{6}{n(n-1)(n+1)}\sum_{i=1}^n \left( R_i - S_i \right)^2,</tex> который наиболее удобен для вычислений. | ||
==Статистическая проверка наличия корреляции== | ==Статистическая проверка наличия корреляции== | ||
- | ''' | + | '''[[Нулевая гипотеза]]''' <tex>H_0</tex>: Выборки <tex>x</tex> и <tex>y</tex> не коррелируют (<tex>\rho = 0</tex>). |
- | '''Статистика критерия:''' | + | '''Статистика критерия:''' <tex>\rho.</tex> |
- | + | ||
- | + | ||
'''Критерий''' (при [[уровень значимости|уровне значимости]] <tex>\alpha</tex>): | '''Критерий''' (при [[уровень значимости|уровне значимости]] <tex>\alpha</tex>): | ||
- | |||
- | |||
- | + | Против альтернативы <tex>H_1:\; \rho\ >\ 0</tex>: | |
+ | : если <tex>\rho</tex> больше табличного значения критерия Спирмена <tex>p</tex><ref>Лагутин М. Б. Наглядная математическая статистика. — 455 с.</ref> с уровнем значимости <tex>\alpha/2</tex>, то нулевая гипотеза отвергается. | ||
- | + | '''Асимптотический критерий:''' | |
- | + | [[Изображение:Standard_Normal_Density_-_Double-sided_Critical_Area.png|thumb|Критическая область критерия Спирмена.]] | |
- | ==Связь | + | Рассмотрим центрированную и нормированную статистику Спирмена: |
+ | |||
+ | :<tex>\tilde{\rho} = \frac{\rho}{\sqrt{D_{\rho}}},</tex>, где <tex>D_{\rho}=\frac{1}{n-1}</tex>. | ||
+ | |||
+ | Нулевая гипотеза отвергается (против альтернативы <tex>H_2</tex> — <tex>\left| \rho \right|\ >\ 0</tex>), если: | ||
+ | |||
+ | : <tex> \left|\tilde{\rho}\right| \ge \Phi_{1-\alpha/2} </tex>,<ref>Кобзарь А. И. Прикладная математическая статистика. — 627 с.</ref><ref>Лагутин М. Б. Наглядная математическая статистика. — 344 с.</ref> где <tex>\Phi_{1-\alpha}</tex> есть <tex>(1-\alpha)</tex>-[[квантиль]] стандартного нормального распределения. | ||
+ | |||
+ | Аппроксимация удовлетворительно работает, начиная с <tex>n\geq 50</tex>.<ref>Лагутин М. Б. Наглядная математическая статистика. — 344 с.</ref> | ||
+ | |||
+ | '''Поправка:'''<ref>Лагутин М. Б. Наглядная математическая статистика. — 345 с.</ref><ref>Кобзарь А. И. Прикладная математическая статистика. — 627 с.</ref> | ||
+ | |||
+ | В 1978 году Р. Иман и У. Коновер предложили следующую поправку, значительно повышающую точность аппроксимации. Она использует линейную комбинацию нормальной и стьюдентовской квантилей. Положим: | ||
+ | |||
+ | <tex>\tilde{\rho} ^{*} = \frac12 \tilde{\rho} \left[ \sqrt{n-1} + \sqrt{\frac{n-2}{1 - (\tilde{\rho})^2}} \right]</tex>. | ||
+ | |||
+ | Гипотеза <tex>H_0</tex> отвергается в пользу альтернативы <tex>H_1\ (\rho\ >\ 0)</tex>, если <tex>\tilde{\rho} ^{*} \ge (x_{1-\alpha}+y_{1-\alpha})/2</tex>, где <tex>x_{1-\alpha},\; y_{1-\alpha}</tex> обозначают соответственно квантили уровня <tex>(1-\alpha)</tex> стандартного нормального распределения и распределения Стьюдента с <tex>n-2</tex> степенями свободы. | ||
+ | |||
+ | ==Примеры== | ||
+ | |||
+ | Ниже приведены примеры вычисления корреляций Кенделла и Спирмена. Значения коэффициентов указаны над каждым изображением в виде <tex>(\tau,\ \rho)</tex>, где <tex>\tau</tex> - корреляция Кенделла, <tex>\rho</tex> - Спирмена. Заметно, что в большинстве случаев <tex>\left| \rho \right|\ >\ \left| \tau \right|</tex>. Объяснение этого эффекта приводится [[Коэффициент_корреляции_Кенделла#Связь коэффициентов корреляции Кенделла и Спирмена|ниже]]. | ||
+ | |||
+ | ===Направление линейной зависимости=== | ||
+ | |||
+ | [[Изображение:Fig1.1-c2.png|left|frame|Корреляции Кенделла и Спирмена. Нормальные сгущения.]]<br clear="both" /> | ||
+ | |||
+ | Коэффициенты корреляции реагируют на изменение направления и зашумлённость линейной зависимости между переменными. | ||
+ | |||
+ | ===Наклон линейного тренда=== | ||
+ | |||
+ | [[Изображение:Kendall Spearman 2.png|left|frame|Корреляции Кенделла и Спирмена. Вращающаяся полоса.]]<br clear="both" /> | ||
+ | |||
+ | Коэффициенты корреляции реагируют на изменение направления, но не реагируют на изменение наклона тренда. На первом, четвёртом и седьмом рисунках дисперсия одной из переменных близка к нулю, поэтому не удаётся зафиксировать факт линейной зависимости. | ||
+ | |||
+ | ===Нелинейная зависимость=== | ||
+ | |||
+ | [[Изображение:Kendall Spearman 3.png|left|frame|Корреляции Кенделла и Спирмена. Нелинейная зависимость.]]<br clear="both" /> | ||
+ | |||
+ | Корреляции Кенделла и Спирмена не отражают меры нелинейной зависимости между переменными. | ||
+ | |||
+ | ===Линейная и нелинейная зависимости=== | ||
+ | |||
+ | На каждой из приведённых ниже иллюстраций осуществляется переход от линейной зависимости к нелинейной. Коэффициенты корреляции Кенделла и Спирмена реагируют на это одинаковым образом. | ||
+ | |||
+ | [[Изображение:Kendall Spearman 1.2.png|left|frame|Корреляции Кенделла и Спирмена. Перекрещенные полосы.]]<br clear="both" /> | ||
+ | [[Изображение:Kendall Spearman 1.3.png|left|frame|Корреляции Кенделла и Спирмена. Расширяющаяся полоса.]]<br clear="both" /> | ||
+ | [[Изображение:Kendall Spearman 1.4.png|left|frame|Корреляции Кенделла и Спирмена. Синусоида с переменной амплитудой.]]<br clear="both" /> | ||
+ | |||
+ | По мере смены линейной зависимости нелинейной значения коэффициентов корреляции падают. | ||
+ | |||
+ | ==Связь коэффициентов корреляции Спирмена и [[коэффициент корреляции Пирсона|Пирсона]]== | ||
+ | |||
+ | В случае выборок из нормального распределения коэффициент корреляции Спирмена <tex>\rho</tex> может быть использован для оценки [[коэффициент корреляции Пирсона|коэффициента корреляции Пирсона]] <tex>r</tex> по формуле: | ||
+ | :<tex>r=2sin{\frac{\pi}{6}\rho}</tex>.<ref>Кобзарь А. И. Прикладная математическая статистика. — 627 с.</ref> | ||
+ | |||
+ | ==Связь коэффициентов корреляции Спирмена и [[Коэффициент корреляции Кенделла|Кенделла]]== | ||
Выборкам <tex>x</tex> и <tex>y</tex> соответствуют последовательности рангов: | Выборкам <tex>x</tex> и <tex>y</tex> соответствуют последовательности рангов: | ||
- | + | :<tex>R_x=(R_{x_1},\ldots,R_{x_n})</tex>, где <tex>R_{x_i}</tex> — ранг <tex>i</tex>-го объекта в [[вариационный ряд|вариационном ряду]] выборки <tex>x</tex>; | |
- | + | :<tex>R_y=(R_{y_1},\ldots,R_{y_n})</tex>, где <tex>R_{y_i}</tex> — ранг <tex>i</tex>-го объекта в [[вариационный ряд|вариационном ряду]] выборки <tex>y</tex>. | |
- | Проведем операцию | + | Проведем операцию упорядочивания рангов. |
- | Расположим ряд значений <tex>x_i</tex> в порядке возрастания величины: <tex>x_1\leq x_2\leq\cdots\leq x_n</tex>. Тогда последовательность рангов упорядоченной выборки <tex>x</tex> будет представлять собой последовательность натуральных чисел <tex>1,2,\cdots,n</tex>. Значения <tex>y</tex>, соответствующие значениям <tex>x</tex>, образуют в этом случае некоторую последовательность рангов <tex>T=(T_1,\cdots,T_n)</tex> | + | Расположим ряд значений <tex>x_i</tex> в порядке возрастания величины: <tex>x_1\leq x_2\leq\cdots\leq x_n</tex>. Тогда последовательность рангов упорядоченной выборки <tex>x</tex> будет представлять собой последовательность натуральных чисел <tex>1,2,\cdots,n</tex>. Значения <tex>y</tex>, соответствующие значениям <tex>x</tex>, образуют в этом случае некоторую последовательность рангов <tex>T=(T_1,\cdots,T_n)</tex>: |
- | + | :<tex>(R_{x_i},\;R_{y_i})\rightarrow^{sort} (i,\;T_i),\; i=1,\cdots,n</tex>. | |
- | Коэффициент корреляции | + | [[Коэффициент корреляции Кенделла]] <tex>\tau</tex> и коэффициент корреляции Спирмена <tex>\rho</tex> выражаются через ранги <tex>T_i,\; i=1,\cdots,n</tex> следующим образом: |
- | + | :<tex>\rho=1-\frac{12}{n^3-n}\sum_{i<j}{(j-i)[T_i\ >\ T_j]};</tex> | |
- | + | :<tex>\tau=1-\frac{4}{n^2-1}\sum_{i<j}[T_i\ >\ T_j];</tex> | |
- | + | Заметно, что в случае <tex>\rho</tex> инверсиям придаются дополнительные веса <tex>(j-i)</tex>, таким образом <tex>\rho</tex> сильнее реагирует на несогласие ранжировок, чем <tex>\tau</tex>. Этот эффект проявляется в приведённых выше примерах: в большинстве из них <tex>\left| \rho \right|\ >\ \left| \tau \right|</tex>. | |
- | '''Утверждение.''' Если выборки <tex>x</tex> и <tex>y</tex> не коррелируют (выполняется гипотеза <tex>H_0</tex>), то | + | '''Утверждение.'''<ref>Лагутин М. Б. Наглядная математическая статистика. — 345-346 с.</ref> Если выборки <tex>x</tex> и <tex>y</tex> не коррелируют (выполняется гипотеза <tex>H_0</tex>), то величины <tex>\rho</tex> и <tex>\tau</tex> сильно закоррелированы. Коэффициент корреляции между ними можно вычислить по формуле: |
- | + | :<tex>corr(\rho,\;\tau)=\frac{2n+2}{\sqrt{4n^2+10n}}</tex>. | |
+ | |||
+ | ==История== | ||
+ | Критерий был предложен британским психологом Чарльзом Эдвардом Спирменом в 1904 году. | ||
+ | |||
+ | ==Примечания== | ||
+ | <references/> | ||
== Литература == | == Литература == | ||
- | # ''Кобзарь А. И.'' Прикладная математическая статистика. — М.: Физматлит, 2006. — | + | # ''Кобзарь А. И.'' Прикладная математическая статистика. — М.: Физматлит, 2006. — 626-628 с. |
+ | # ''Лагутин М. Б.'' Наглядная математическая статистика. В двух томах. — М.: П-центр, 2003. — 343-345 с. | ||
+ | # ''Лапач С. Н., Чубенко А. В., Бабич П. Н.'' Статистика в науке и бизнесе. — Киев: Морион, 2002. — 182-184 с. | ||
- | == | + | ==Ссылки== |
- | + | ||
*[[Ранговая корреляция]] | *[[Ранговая корреляция]] | ||
- | *[[Коэффициент корреляции Кенделла]] | + | *[[Коэффициент корреляции Кенделла]] — другой способ расчёта ранговой корреляции. |
+ | *[[Коэффициент корреляции Пирсона]] | ||
+ | *[http://ru.wikipedia.org/wiki/Коэффициент_корреляции Коэффициент корреляции] — статья в русскоязычной Википедии. | ||
+ | *[http://en.wikipedia.org/wiki/Spearman%27s_rank_correlation_coefficient Spearman rank correlation coefficient] — статья в англоязычной Википедии. | ||
- | |||
- | |||
- | |||
[[Категория:Прикладная статистика]] | [[Категория:Прикладная статистика]] | ||
[[Категория:Энциклопедия анализа данных]] | [[Категория:Энциклопедия анализа данных]] | ||
- | [[Категория: Корреляционный анализ]] | + | [[Категория:Корреляционный анализ]] |
+ | |||
+ | {{Задание|Василий Ломакин|Vokov|31 декабря 2009}} |
Текущая версия
|
Коэффициент корреляции Спирмена (Spearman rank correlation coefficient) — мера линейной связи между случайными величинами. Корреляция Спирмена является ранговой, то есть для оценки силы связи используются не численные значения, а соответствующие им ранги. Коэффициент инвариантен по отношению к любому монотонному преобразованию шкалы измерения.
Определение
Заданы две выборки .
Вычисление корреляции Спирмена:
Коэффициент корреляции Спирмена вычисляется по формуле:
- ,[1] где - ранг наблюдения в ряду , - ранг наблюдения в ряду .
Коэффициент принимает значения из отрезка . Равенство указывает на строгую прямую линейную зависимость, на обратную.
Случай совпадающих наблюдений:
При наличии связок коэффициент корреляции Спирмена следует вычислять следующим образом:
- [1]
- где .
- Здесь и — количество связок в выборках и , , — их размеры. Для элементов связок вычисляется средний ранг.
Обоснование критерия Спирмена:
Статистикой критерия Спирмена служит коэффициент корреляции Пирсона ранговых наборов и . Он определяется следующей формулой:
- В этой формуле .
Воспользовавшись тем, что , получим:
- .
Переставив пары в порядке возрастания первой компоненты, получим набор . Тогда перепишем коэффициент корреляции Спирмена в виде:
- .
Таким образом, - линейная функция от рангов . Правую часть равенства можно представить в следующем виде:[1]
- который наиболее удобен для вычислений.
Статистическая проверка наличия корреляции
Нулевая гипотеза : Выборки и не коррелируют ().
Статистика критерия:
Критерий (при уровне значимости ):
Против альтернативы :
- если больше табличного значения критерия Спирмена [1] с уровнем значимости , то нулевая гипотеза отвергается.
Асимптотический критерий:
Рассмотрим центрированную и нормированную статистику Спирмена:
- , где .
Нулевая гипотеза отвергается (против альтернативы — ), если:
Аппроксимация удовлетворительно работает, начиная с .[1]
В 1978 году Р. Иман и У. Коновер предложили следующую поправку, значительно повышающую точность аппроксимации. Она использует линейную комбинацию нормальной и стьюдентовской квантилей. Положим:
.
Гипотеза отвергается в пользу альтернативы , если , где обозначают соответственно квантили уровня стандартного нормального распределения и распределения Стьюдента с степенями свободы.
Примеры
Ниже приведены примеры вычисления корреляций Кенделла и Спирмена. Значения коэффициентов указаны над каждым изображением в виде , где - корреляция Кенделла, - Спирмена. Заметно, что в большинстве случаев . Объяснение этого эффекта приводится ниже.
Направление линейной зависимости
Коэффициенты корреляции реагируют на изменение направления и зашумлённость линейной зависимости между переменными.
Наклон линейного тренда
Коэффициенты корреляции реагируют на изменение направления, но не реагируют на изменение наклона тренда. На первом, четвёртом и седьмом рисунках дисперсия одной из переменных близка к нулю, поэтому не удаётся зафиксировать факт линейной зависимости.
Нелинейная зависимость
Корреляции Кенделла и Спирмена не отражают меры нелинейной зависимости между переменными.
Линейная и нелинейная зависимости
На каждой из приведённых ниже иллюстраций осуществляется переход от линейной зависимости к нелинейной. Коэффициенты корреляции Кенделла и Спирмена реагируют на это одинаковым образом.
По мере смены линейной зависимости нелинейной значения коэффициентов корреляции падают.
Связь коэффициентов корреляции Спирмена и Пирсона
В случае выборок из нормального распределения коэффициент корреляции Спирмена может быть использован для оценки коэффициента корреляции Пирсона по формуле:
- .[1]
Связь коэффициентов корреляции Спирмена и Кенделла
Выборкам и соответствуют последовательности рангов:
- , где — ранг -го объекта в вариационном ряду выборки ;
- , где — ранг -го объекта в вариационном ряду выборки .
Проведем операцию упорядочивания рангов.
Расположим ряд значений в порядке возрастания величины: . Тогда последовательность рангов упорядоченной выборки будет представлять собой последовательность натуральных чисел . Значения , соответствующие значениям , образуют в этом случае некоторую последовательность рангов :
- .
Коэффициент корреляции Кенделла и коэффициент корреляции Спирмена выражаются через ранги следующим образом:
Заметно, что в случае инверсиям придаются дополнительные веса , таким образом сильнее реагирует на несогласие ранжировок, чем . Этот эффект проявляется в приведённых выше примерах: в большинстве из них .
Утверждение.[1] Если выборки и не коррелируют (выполняется гипотеза ), то величины и сильно закоррелированы. Коэффициент корреляции между ними можно вычислить по формуле:
- .
История
Критерий был предложен британским психологом Чарльзом Эдвардом Спирменом в 1904 году.
Примечания
Литература
- Кобзарь А. И. Прикладная математическая статистика. — М.: Физматлит, 2006. — 626-628 с.
- Лагутин М. Б. Наглядная математическая статистика. В двух томах. — М.: П-центр, 2003. — 343-345 с.
- Лапач С. Н., Чубенко А. В., Бабич П. Н. Статистика в науке и бизнесе. — Киев: Морион, 2002. — 182-184 с.
Ссылки
- Ранговая корреляция
- Коэффициент корреляции Кенделла — другой способ расчёта ранговой корреляции.
- Коэффициент корреляции Пирсона
- Коэффициент корреляции — статья в русскоязычной Википедии.
- Spearman rank correlation coefficient — статья в англоязычной Википедии.
Данная статья является непроверенным учебным заданием.
До указанного срока статья не должна редактироваться другими участниками проекта MachineLearning.ru. По его окончании любой участник вправе исправить данную статью по своему усмотрению и удалить данное предупреждение, выводимое с помощью шаблона {{Задание}}. См. также методические указания по использованию Ресурса MachineLearning.ru в учебном процессе. |