МЛР
Материал из MachineLearning.
(→Сингулярное разложение) |
|||
Строка 20: | Строка 20: | ||
<tex>P_{_F} y</tex> — вектор, являющийся проекцией <tex>y</tex> на <tex>\mathfrak{L}(f_1,\ \dots,\ f_n)</tex>.<br /> | <tex>P_{_F} y</tex> — вектор, являющийся проекцией <tex>y</tex> на <tex>\mathfrak{L}(f_1,\ \dots,\ f_n)</tex>.<br /> | ||
{{бледно|<small>как нарисовать значок проекционной матрицы, чтобы его можно было отличить от того, на что матрица умножается?!</small>}} | {{бледно|<small>как нарисовать значок проекционной матрицы, чтобы его можно было отличить от того, на что матрица умножается?!</small>}} | ||
+ | |||
+ | Теперь рассмотрим [[МЛР#Сингулярное разложение|сингулярное разложение]] матрицы F: | ||
== Сингулярное разложение == | == Сингулярное разложение == | ||
- | Пусть <tex> | + | Пусть <tex>F \in \mathbb{R}^{l x n}:\ rank(F) = n;\ l \ge n</tex>, тогда F представима в виде <tex>F = VDU^T</tex>, где: |
# <tex>D = diag(\sqrt{\lambda _1},\ \dots,\ \sqrt{\lambda _n}),\ \lambda _j</tex> — собственные значения матрицы <tex>F^TF,\ \lambda _j \ >\ 0, j=1,\ \dots,\ n</tex>.<ref>Или, что то же самое, ненулевые собственные значения матрицы <tex>FF^T</tex>.</ref> | # <tex>D = diag(\sqrt{\lambda _1},\ \dots,\ \sqrt{\lambda _n}),\ \lambda _j</tex> — собственные значения матрицы <tex>F^TF,\ \lambda _j \ >\ 0, j=1,\ \dots,\ n</tex>.<ref>Или, что то же самое, ненулевые собственные значения матрицы <tex>FF^T</tex>.</ref> | ||
# <tex>V = (v_1,\ \ldots,\ v_n),\ v_i</tex> — собственные вектора <tex>FF^T</tex>, причём <tex>V^TV = I_n</tex>. | # <tex>V = (v_1,\ \ldots,\ v_n),\ v_i</tex> — собственные вектора <tex>FF^T</tex>, причём <tex>V^TV = I_n</tex>. |
Версия 23:07, 4 января 2010
![]() | Данная статья является непроверенным учебным заданием.
До указанного срока статья не должна редактироваться другими участниками проекта MachineLearning.ru. По его окончании любой участник вправе исправить данную статью по своему усмотрению и удалить данное предупреждение, выводимое с помощью шаблона {{Задание}}. См. также методические указания по использованию Ресурса MachineLearning.ru в учебном процессе. |
Многомерная линейная регрессия
Имеется множество объектов и множество ответов
. Также имеется набор
вещественнозначных признаков
. Введём матричные обозначения: матрицу информации
, целевой вектор
и вектор параметров
:
Алгоритм:
.
Оценим качество его работы на выборке методом наименьших квадратов:
, или, в матричных обозначениях,
.
Найдём минимум по α:
.
Если , то можно обращать матрицу
, где введено обозначение
.
В таком случае функционал качества записывается в более удобной форме:
, где
— проекционная матрица:
— вектор, являющийся проекцией
на
.
как нарисовать значок проекционной матрицы, чтобы его можно было отличить от того, на что матрица умножается?!
Теперь рассмотрим сингулярное разложение матрицы F:
Сингулярное разложение
Пусть , тогда F представима в виде
, где:
-
— собственные значения матрицы
.[1]
-
— собственные вектора
, причём
.
-
— собственные вектора
, причём
.