Метод релевантных векторов
Материал из MachineLearning.
| Строка 26: | Строка 26: | ||
== Оптимизация обоснованности ==  | == Оптимизация обоснованности ==  | ||
| - | * Заметив, что обоснованность является сверткой двух нормальных распределений, можно представить подынтегральную функцию по формуле Тейлора в точке максимума правдоподобия. Обозначив <tex>Q(\mathbf{\omega}) = p(\mathbf{t} |X,\mathbf{\omega}, \sigma^2)p(\mathbf{\omega} |\mathbf{\alpha} ) \mbox{, } H = \bigtriangledown\bigtriangledown\,\log Q(\mathbf{\omega}_{MP})</tex> после некоторых преобразований получим:  | + | * Заметив, что обоснованность является сверткой двух нормальных распределений, можно представить подынтегральную функцию по формуле Тейлора в точке максимума правдоподобия. Обозначив <tex>Q(\mathbf{\omega}) = p(\mathbf{t} |X,\mathbf{\omega}, \sigma^2)p(\mathbf{\omega} |\mathbf{\alpha} ) \mbox{, } H = \bigtriangledown\bigtriangledown\,\log Q(\mathbf{\omega}_{MP})</tex>, после некоторых преобразований получим:  | 
:: <tex>\int Q( \mathbf{\omega} )d\mathbf{\omega} = \sqrt{\left(2\pi\right)^m}\frac{Q(\mathbf{\omega} _{MP})}{\sqrt{\det(-H)}}</tex>  | :: <tex>\int Q( \mathbf{\omega} )d\mathbf{\omega} = \sqrt{\left(2\pi\right)^m}\frac{Q(\mathbf{\omega} _{MP})}{\sqrt{\det(-H)}}</tex>  | ||
| Строка 42: | Строка 42: | ||
:Здесь <tex>\Sigma = \left( \beta\Phi^T\Phi+A\right)^{-1}\mbox{,   }\; \mathbf{\omega}_{MP} = \beta\Sigma\Phi^T\mathbf{t}</tex>  | :Здесь <tex>\Sigma = \left( \beta\Phi^T\Phi+A\right)^{-1}\mbox{,   }\; \mathbf{\omega}_{MP} = \beta\Sigma\Phi^T\mathbf{t}</tex>  | ||
| - | *Параметр <tex>\gamma_i</tex> можно интерпретировать как степень, в которой   | + | *Параметр <tex>\gamma_i</tex> можно интерпретировать как степень, в которой соответствующий вес <tex>\omega_i</tex> определяется данными или регуляризацией. Если <tex>\alpha_i</tex> велико, то вес <tex>\omega_i</tex> существенно предопределен априорным распределением, <tex>\textstyle \Sigma_{ii} \simeq \alpha_i^{-1}</tex> и <tex>\gamma_i \simeq 0</tex>. С другой стороны, для малых значений <tex>\alpha_i</tex> значение веса <tex>\omega_i</tex> полностью определяется данными, <tex>\gamma_i \simeq 0</tex>.  | 
== Принятие решения ==  | == Принятие решения ==  | ||
| Строка 76: | Строка 76: | ||
:::::<tex>\gamma_j = \alpha_j^{old}\Sigma_{jj},\,\,\alpha_j = \frac{\gamma_j}{\omega^2_{MP,j};</tex>  | :::::<tex>\gamma_j = \alpha_j^{old}\Sigma_{jj},\,\,\alpha_j = \frac{\gamma_j}{\omega^2_{MP,j};</tex>  | ||
:::<tex>\beta_i^{new} = \frac{\textstyle{n-\sum_{i=1}^m\gamma_i}}{\left\parallel \mathbf{t} - \Phi\mathbf{\omega} \right\parallel^2}{\omega^2_{MP,i}</tex>  | :::<tex>\beta_i^{new} = \frac{\textstyle{n-\sum_{i=1}^m\gamma_i}}{\left\parallel \mathbf{t} - \Phi\mathbf{\omega} \right\parallel^2}{\omega^2_{MP,i}</tex>  | ||
| + | |||
| + | ==См. также==  | ||
| + | [[Байесовский классификатор]]<br />  | ||
| + | [[Регрессия|Линейная регрессия]]<br />  | ||
| + | [[ЕМ-алгоритм, его модификации и обобщения]]<br />  | ||
| + | [[SVM]]  | ||
| + | |||
| + | [[Категория:Байесовские методы]]  | ||
| + | |||
| + | [[Категория:Непроверенные учебные задания]]  | ||
Версия 17:43, 7 января 2010
|   |  Данная статья является непроверенным учебным заданием.
 До указанного срока статья не должна редактироваться другими участниками проекта MachineLearning.ru. По его окончании любой участник вправе исправить данную статью по своему усмотрению и удалить данное предупреждение, выводимое с помощью шаблона {{Задание}}. См. также методические указания по использованию Ресурса MachineLearning.ru в учебном процессе.  | 
|   |  Статья в настоящий момент дорабатывается. Dimaleks 20:09, 7 января 2010 (MSK)  | 
Метод релевантных векторов (RVM, Relevance vector machine) — алгоритм восстановления регрессии, основанный на Байесовском подходе. В методе используется обобщенная линейная модель с введенной регуляризацией, которая, в Байесовкой интерпретации, равносильна введению априорных распределений на вектор параметров. Главной особенностью является то, что все параметры регуляризируются независимо.
Содержание | 
Решаемая задача
- Имеется выборка 
, где вектор признаков
, а целевая переменная
. Требуется для нового объекта
предсказать значение целевой переменной
 - Предполагается, что 
, где
, а
 
Подход к решению
- Следуя байесовскому подходу, воспользуемся методом максимума апостериорной плотности:
 
- Для получения разреженного решения введем в качестве априорного распределения на параметры 
нормальное распределение с диагональной матрицей ковариации с различными элементами на диагонали:
 
- Здесь 
. Такое априорное распределение соответствует независимой регуляризации вдоль каждого веса
со своим параметром регуляризации
 
- Для обучения модели (настройки параметров 
) воспользуемся идеей максимизации обоснованности:
 
Оптимизация обоснованности
-  Заметив, что обоснованность является сверткой двух нормальных распределений, можно представить подынтегральную функцию по формуле Тейлора в точке максимума правдоподобия. Обозначив 
, после некоторых преобразований получим:
 
-  Обозначив, для удобства, 
, и "в лоб" раскрывая предыдущее выражение, получим:
 
-  
,
 
-  
 
-  где 
— матрица обобщенных признаков.
 
- Теперь, приравнивая нулю производные обоснованности по 
, получим итерационные формулы для пересчета параметров:
 
- Здесь 
 
- Параметр 
можно интерпретировать как степень, в которой соответствующий вес
определяется данными или регуляризацией. Если
велико, то вес
существенно предопределен априорным распределением,
и
. С другой стороны, для малых значений
значение веса
полностью определяется данными,
.
 
Принятие решения
- Зная значения 
можно вычислить апостериорное распределение целевой переменной:
 
Обсуждение метода
- На практике процесс обучения обычно требует 20-50 итераций. На каждой итерации вычисляется 
(это требует обращения матрицы порядка
), а также пересчитываются значения
(пратктически не требует времени). Как следствие, скорость обучения падает примерно в 20-50 раз по сравнению с линейной регрессией.
 - При использовании ядровых функций в качестве обобщенных признаков необходимо проводить скользящий контроль для различных значений параметров ядра. В этом случае время обучения возрастает еще в несколько раз.
 - На выходе алгоритма получается разреженное решение, т. е. только небольшое подмножество исходной выборки входит в решающее правило.
 - Кроме значения целевой переменной, алгоритм выдает также и дисперсию прогноза.
 
Псевдокод алгоритма RVM
Вход: Обучающая выборка , матрица обобщенных признаков 
Выход: Параметры решающего правила: 
- Инициализация: 
 - для 
повторять
- для 
повторять
- если 
или
то
 - иначе
 
 - если 
 
 
- Инициализация: 
 
См. также
Байесовский классификатор
Линейная регрессия
ЕМ-алгоритм, его модификации и обобщения
SVM

