Порождение нелинейных регрессионных моделей (пример)

Материал из MachineLearning.

(Различия между версиями)
Перейти к: навигация, поиск
Строка 13: Строка 13:
[[Изображение:Clip_image001.gif‎|300px]]
[[Изображение:Clip_image001.gif‎|300px]]
-
Так, дереву '''А''' соответствует суперпозиция <tex>2(1(1),2(1,1))</tex>, а дереву '''Б''' – суперпозиция <tex>1(2(1,1))</tex>.<br /> <br />
+
Так, дереву '''А''' соответствует суперпозиция <tex>2(1(1),2(1,1))</tex>, а дереву '''Б''' – суперпозиция <tex>1(2(1,1))</tex>.
-
Возможна и другая постановка алгоритма. Она особенно ценна, если нельзя вызвать <tex>g^{_{(2)}}_i(x,x)</tex> в виде <tex>g^{_{(2)}}_i(x)</tex>. Изменение состоит в том, что листья дерева суперпозиции считаются не функциями, а свободными переменными. В этом случае дереву '''А''' будет соответствовать суперпозиция <tex>2(1(x), 2(x,x))</tex> дереву '''Б''' – суперпозиция <tex>1(2(x,x))</tex>.
+
 
 +
== Альтернативная интерпретация ==
 +
Эта интерпретация особенно ценна, если нельзя вызвать <tex>g^{_{(2)}}_i(x,x)</tex> в виде <tex>g^{_{(2)}}_i(x)</tex>. Изменение состоит в том, что листья дерева суперпозиции считаются не функциями, а свободными переменными. В этом случае дереву '''А''' будет соответствовать суперпозиция <tex>2(1(x), 2(x,x))</tex> дереву '''Б''' – суперпозиция <tex>1(2(x,x))</tex>.
== Порождение множества деревьев суперпозиций ==
== Порождение множества деревьев суперпозиций ==
Строка 23: Строка 25:
Так, деревья '''А''' и '''В''' различны с точки зрения задаваемых суперпозиций, но деревья '''А''' и '''Б''' идентичны. Поэтому при машинной реализации можно вообще исключить деревья типа '''Б''', т.е. если из вершины исходит одно ребро, будем «рисовать» его «сверху вниз, справа налево», как в деревьях '''А''' и '''В'''.<br />
Так, деревья '''А''' и '''В''' различны с точки зрения задаваемых суперпозиций, но деревья '''А''' и '''Б''' идентичны. Поэтому при машинной реализации можно вообще исключить деревья типа '''Б''', т.е. если из вершины исходит одно ребро, будем «рисовать» его «сверху вниз, справа налево», как в деревьях '''А''' и '''В'''.<br />
Порождение деревьев осуществим по уровням глубины. Т.е. для задачи порождения деревьев высоты не больше <tex>n</tex> породим все деревья высоты не больше <tex>n-1</tex> и запишем их в список <tex>1</tex>. В список <tex>2</tex> поместим все деревья высоты ровно <tex>n-1</tex>. Далее возьмём дерево из списка <tex>2</tex>, построим всевозможные деревья высоты <tex>n</tex> из него, получаемые добавлением рёбер к вершинам нижнего уровня глубины, и поместим их в конец списка <tex>1</tex>. То же проделаем со всеми остальными деревьями списка <tex>2</tex>.
Порождение деревьев осуществим по уровням глубины. Т.е. для задачи порождения деревьев высоты не больше <tex>n</tex> породим все деревья высоты не больше <tex>n-1</tex> и запишем их в список <tex>1</tex>. В список <tex>2</tex> поместим все деревья высоты ровно <tex>n-1</tex>. Далее возьмём дерево из списка <tex>2</tex>, построим всевозможные деревья высоты <tex>n</tex> из него, получаемые добавлением рёбер к вершинам нижнего уровня глубины, и поместим их в конец списка <tex>1</tex>. То же проделаем со всеми остальными деревьями списка <tex>2</tex>.
 +
 +
 +
== Обход дерева суперпозиции ==
 +
Следующий этап алгоритма – это получение по дереву задаваемой им суперпозиции в виде строки символов {<tex>,</tex> <tex>(</tex> <tex>)</tex> <tex>1</tex> <tex>2</tex>}, где <tex>1</tex> и <tex>2</tex> означают <tex>g^{_{(1)}}_i</tex> и <tex>g^{_{(2)}}_i</tex>.
 +
 +
[[Изображение:Clip_image003.gif|369px]]
 +
 +
Для этого совершим обход дерева в глубину и поставим вершине типа '''А''' в соответствие конструкцию <tex>2( , )</tex>, вершине '''В''' – <tex>1( )</tex>, вершине '''C''' – <tex>1</tex>.
 +
 +
 +
== Уточнение типа функции ==
 +
Для порождения полного списка возможных суперпозиций, в которых вместо <tex>g_i^{_{(1)}}</tex> и <tex>g_i^{_{(2)}}</tex> стоят <tex>1</tex> и <tex>2</tex>, – нужно, воспользовавшись тем, что <tex>g_i^{_{(2)}}(x,y)</tex> может быть вызвана как <tex>g_i^{_{(2)}}(x)</tex>, заменить в каждой строке суперпозиции всеми возможными способами цифру <tex>1</tex> на <tex>2</tex>. Это несложно реализуется полным перебором – в каждом вхождении <tex>1</tex> нужно выбрать, заменять её или нет.<br /><br />
 +
Этот этап будет излишним в реализации альтернативного варианта алгоритма.
 +
 +
 +
== Подстановка номера функции ==
 +
Заключительный этап заключается в том, чтобы по двум спискам с номерами функций: в первом – номера <tex>g_i^{_{(1)}}(x)</tex>, во втором – <tex>g_i^{_{(2)}}(x,y)</tex> – и подготовленному на предыдущем шаге списку получить необходимый список суперпозиций. Осуществляется, опять же, полным перебором: рассматриваются все варианты замены <tex>1</tex> в каждом вхождении на номера из первого списка умножить на все варианты замены <tex>2</tex> в каждом вхождении на номера из второго списка.<br /><br />
 +
Список, полученный после этого шага, будет искомым.
 +
 +
 +
== Выбор оптимальной модели ==
 +
Необходимо понять, на каком этапе прекращать работу алгоритма и как из полученного множества моделей выбрать нужную. Вопрос выбора встаёт по той причине, что данные всегда зашумлены и функция, идеально приближающая обучающую выборку, может оказаться слишком сложной и, как следствие, неподходящей. Основная идея в том, чтобы ввести два параметра <tex>R</tex> и <tex>C</tex>, характеризующие функцию. Параметр <tex>R</tex> характеризует степень приближения функцией данных на обучающей выборке (например, сумма квадратов остатков). Параметр <tex>C</tex> характеризует сложность функции. Выбор его может быть самым разнообразным и зависеть от самих функций (например, скорее всего, вес <tex>sin(x)</tex> или <tex>exp(x)</tex> много больше веса <tex>ax+b</tex>), или же от дерева суперпозиции, или от того и другого. При выборе зависимости <tex>C</tex> от дерева суперпозиции также есть варианты среди всевозможных характеристик дерева: высоты <tex>h</tex>, числа вершин <tex>|V|</tex>, длины наибольшего пути и др. Одна из характеристик (предложена Е.Владиславлевой) – сумма количеств вершин <tex>sum|V^i |</tex> по всем поддеревьям <tex>T^i(V^i, X^i)</tex> дерева суперпозиции <tex>T(V, X)</tex>. Под поддеревом понимается дерево, состоящее из некоторой вершины и всех её потомков.
 +
 +
[[Изображение:Clip_image004.gif|600px]]
 +
 +
Например, на рисунках '''Б''' – '''Д''' обведены всевозможные поддеревья дерева '''А'''. Сложность по Владиславлевой дерева '''А''' равна <tex>1+2+1+4 = 8</tex>.

Версия 17:20, 20 апреля 2010

Порождение нелинейных регрессионных моделей - порождение функций, зависящих от параметров и от одной или нескольких свободных переменных. Зависимость от параметров предполагается нелинейной.


Содержание

Постановка задачи

Задана выборка из m пар (\mathbf{x}_i,y_i). Задан набор порождающих функций одного и двух аргументов [G_i]_{i=1}^{n} = [[g_l^{_{(1)}}(w_l,x)]_{l=1}^k,[g_m^{_{(2)}}(w_m,x,y)_{m=k+1}^n]], которые зависят от параметров \mathbf{w_i}=(w_1,...,w_{W_i}) и свободных переменных x,y. Функции гладкие параметрические. Требуется создать алгоритм, порождающий лексикографически упорядоченные суперпозиции возрастающей сложности. Каждая суперпозиция является регрессионной моделью одной независимой переменной. Сравнить качество моделей и регрессионные остатки на порожденном множестве.

Дополнительные предположения

Предполагается, что функции g^{_{(2)}}_i(w_i,x, y) корректно работают в случае вызова в виде g^{_{(2)}}_i(w_i,x).

Интерпретация на языке деревьев

Заметим вначале, что суперпозиция функций G_i может быть задана двоичным деревом T(V,X), вершины которого V_iG_i, корень – самая внешняя функция суперпозиции. Под глубиной вершины будем понимать расстояние от неё до корня. Если у вершины один потомок, то соответствующая функция запишется как g_i(g_j), если два – то g_i(g_j,g_k), если ноль – то g_i(x) или g_i(x,x).

Так, дереву А соответствует суперпозиция 2(1(1),2(1,1)), а дереву Б – суперпозиция 1(2(1,1)).

Альтернативная интерпретация

Эта интерпретация особенно ценна, если нельзя вызвать g^{_{(2)}}_i(x,x) в виде g^{_{(2)}}_i(x). Изменение состоит в том, что листья дерева суперпозиции считаются не функциями, а свободными переменными. В этом случае дереву А будет соответствовать суперпозиция 2(1(x), 2(x,x)) дереву Б – суперпозиция 1(2(x,x)).

Порождение множества деревьев суперпозиций

Комбинаторная простота этого шага алгоритма заключается в том, что изоморфные деревья задают разные суперпозиции. Однако простые смещения вершин не дают новых деревьев.

Так, деревья А и В различны с точки зрения задаваемых суперпозиций, но деревья А и Б идентичны. Поэтому при машинной реализации можно вообще исключить деревья типа Б, т.е. если из вершины исходит одно ребро, будем «рисовать» его «сверху вниз, справа налево», как в деревьях А и В.
Порождение деревьев осуществим по уровням глубины. Т.е. для задачи порождения деревьев высоты не больше n породим все деревья высоты не больше n-1 и запишем их в список 1. В список 2 поместим все деревья высоты ровно n-1. Далее возьмём дерево из списка 2, построим всевозможные деревья высоты n из него, получаемые добавлением рёбер к вершинам нижнего уровня глубины, и поместим их в конец списка 1. То же проделаем со всеми остальными деревьями списка 2.


Обход дерева суперпозиции

Следующий этап алгоритма – это получение по дереву задаваемой им суперпозиции в виде строки символов {, ( ) 1 2}, где 1 и 2 означают g^{_{(1)}}_i и g^{_{(2)}}_i.

Для этого совершим обход дерева в глубину и поставим вершине типа А в соответствие конструкцию 2( , ), вершине В1( ), вершине C1.


Уточнение типа функции

Для порождения полного списка возможных суперпозиций, в которых вместо g_i^{_{(1)}} и g_i^{_{(2)}} стоят 1 и 2, – нужно, воспользовавшись тем, что g_i^{_{(2)}}(x,y) может быть вызвана как g_i^{_{(2)}}(x), заменить в каждой строке суперпозиции всеми возможными способами цифру 1 на 2. Это несложно реализуется полным перебором – в каждом вхождении 1 нужно выбрать, заменять её или нет.

Этот этап будет излишним в реализации альтернативного варианта алгоритма.


Подстановка номера функции

Заключительный этап заключается в том, чтобы по двум спискам с номерами функций: в первом – номера g_i^{_{(1)}}(x), во втором – g_i^{_{(2)}}(x,y) – и подготовленному на предыдущем шаге списку получить необходимый список суперпозиций. Осуществляется, опять же, полным перебором: рассматриваются все варианты замены 1 в каждом вхождении на номера из первого списка умножить на все варианты замены 2 в каждом вхождении на номера из второго списка.

Список, полученный после этого шага, будет искомым.


Выбор оптимальной модели

Необходимо понять, на каком этапе прекращать работу алгоритма и как из полученного множества моделей выбрать нужную. Вопрос выбора встаёт по той причине, что данные всегда зашумлены и функция, идеально приближающая обучающую выборку, может оказаться слишком сложной и, как следствие, неподходящей. Основная идея в том, чтобы ввести два параметра R и C, характеризующие функцию. Параметр R характеризует степень приближения функцией данных на обучающей выборке (например, сумма квадратов остатков). Параметр C характеризует сложность функции. Выбор его может быть самым разнообразным и зависеть от самих функций (например, скорее всего, вес sin(x) или exp(x) много больше веса ax+b), или же от дерева суперпозиции, или от того и другого. При выборе зависимости C от дерева суперпозиции также есть варианты среди всевозможных характеристик дерева: высоты h, числа вершин |V|, длины наибольшего пути и др. Одна из характеристик (предложена Е.Владиславлевой) – сумма количеств вершин sum|V^i | по всем поддеревьям T^i(V^i, X^i) дерева суперпозиции T(V, X). Под поддеревом понимается дерево, состоящее из некоторой вершины и всех её потомков.

Например, на рисунках БД обведены всевозможные поддеревья дерева А. Сложность по Владиславлевой дерева А равна 1+2+1+4 = 8.

Личные инструменты