Прореживание двухслойной нейронной сети (пример)
Материал из MachineLearning.
(→Настройка нейронной сети) |
(→Постановка задачи) |
||
Строка 2: | Строка 2: | ||
== Постановка задачи == | == Постановка задачи == | ||
- | Задана обучающая выборка <tex>X^l, Y^l</tex>. Требуется решить задачу классификации с использованием двухслойной [http://ru.wikipedia.org/wiki/%D0%9D%D0%B5%D0%B9%D1%80%D0%BE%D0%BD%D0%BD%D0%B0%D1%8F_%D1%81%D0%B5%D1%82%D1%8C нейронной сети]; | + | Задана обучающая выборка <tex>X^l, Y^l</tex>. Требуется решить задачу классификации с использованием двухслойной [http://ru.wikipedia.org/wiki/%D0%9D%D0%B5%D0%B9%D1%80%D0%BE%D0%BD%D0%BD%D0%B0%D1%8F_%D1%81%D0%B5%D1%82%D1%8C нейронной сети], настроив параметры сети - весовые матрицы <tex>W_1</tex> и <tex>W_2</tex>, соответствующие соответственно первому и второму слою. Посчитать гессиан <tex>H = \frac{\partial^2\bf{E}(\bf{w})}{\partial \bf{w}^2}</tex>, где <tex>\bf{w}</tex> - вектор параметров, <tex>\bf {E}</tex> - функция стоимости; посчитать функцию выпуклости и упростить сеть, выбросив из нее параметры, соответствующие наименьшей степени выпуклости. Среднеквадратичная ошибка классификации <tex>E</tex> при этом не должна сильно возрасти. |
== Настройка нейронной сети == | == Настройка нейронной сети == |
Версия 18:02, 21 апреля 2010
Прореживание двухслойной нейронной сети (optimal brain damage) — метод упрощения структуры нейронной сети. Идея прореживания состоит в том, что из сети удаляются параметры, оказывающие малое влияние на ошибку аппроксимации. Таким образом, модель упрощается, а ошибка аппроксимации возрастает незначительно.
Содержание |
Постановка задачи
Задана обучающая выборка . Требуется решить задачу классификации с использованием двухслойной нейронной сети, настроив параметры сети - весовые матрицы и , соответствующие соответственно первому и второму слою. Посчитать гессиан , где - вектор параметров, - функция стоимости; посчитать функцию выпуклости и упростить сеть, выбросив из нее параметры, соответствующие наименьшей степени выпуклости. Среднеквадратичная ошибка классификации при этом не должна сильно возрасти.
Настройка нейронной сети
Двухслойная нейронная сеть состоит из одного скрытого слоя и выходного слоя. Каждый нейрон сети имеет сигмоидальную функции активации . Значения признаков поступают на вход первому (скрытому) слою сети с весовой матрицей , выходы первого слоя поступают на вход второму с весовой матрицей .На выходе второго слоя вычисляется вектор-функция , где - количество нейронов на втором слое. Необходимо настроить параметры сети, используя алгоритм обратного распространения (back propagation). - нормированная среднеквадратичная ошибка. Пусть - вес, соединяющий нейрон с нейроном следующего слоя. Тогда коррекция веса, применяемая к , определяется согласно правилу , где - локальный градиент нейрона . Здесь - выход -го нейрона, - значение, которое получает на вход функция активации, соответствующая -му нейрону ( - количество его входов), - темп обучения. Поскольку ошибка представляется в виде , то для выходного слоя , и для него справедливо .
Соответственно, для первого, скрытого, слоя справедлива формула обратного распространения .
Алгоритм оптимального прореживания
Описание метода второго порядка приводится в статье Оптимальное прореживание нейронных сетей.
Основное отличие данного метода состоит в допущении, что матрица Гессе является диагональной. Таким образом, алгоритм немного видоизменяется:
Задана выборка , модель , функция ошибки . Для упрощения структуры сети выполняем следующие шаги:
1. настраиваем модель, получаем параметры .
2. пока значение ошибки не превосходит заранее заданного (3-5):
3. вычисляем гессиан согласно формуле
обозначим за аргумент функции активации нейрона на слое . Тогда частные производные на втором слое:
при = и равны 0 при ,
а на первом слое
и
4. вычисляем функцию выпуклости , находим , соответствующее наименьшей степени выпуклости.
5. вес удаляется из сети
Примеры на модельных данных
Пример 1: выборка линейно разделима
На графике показаны результаты классификации. На первом и втором слое сети - по 5 нейронов, количество признаков - 4. Итого получается 45 весов. Видно, что алгоритм сработал без ошибок.
Ниже приведены графики функции выпуклости (одная кривая - зависимость функции выпуклости от одного параметра) и график зависимости ошибки от количества удаленных параметров.
Видно, что из сети с 45 параметрами можно удалить 18, практически не проиграв в качестве.
Пример 2: выборка линейно неразделима
Те же самые 45 весов. Алгоритм допустил 3 ошибки при классификации:
Графики функции выпуклости и количества ошибок:
Результат прореживания здесь более наглядный: можно удалить 35 из 45 параметров без потери качества.
Приведем график зависимости ошибки от количества удаленных параметров для тех же данных и 50 нейронов на каждом из слоев.
Исходный код
Скачать листинги алгоритмов можно здесь: ComputeHessianAndConvexity.m, ComputeResult.m, PlotErrors.m,PlotHessian.m, PlotOBD.m, TuneNet.m, mainNet.m
См. также
Литература
- Хайкин С. Нейронные сети, полный курс. 2е издание, испр.
- К. В. Воронцов, Лекции по линейным алгоритмам классификации