Нормализация ДНК-микрочипов
Материал из MachineLearning.
м (→Парадигмы нормализации) |
(→Методы нормализации) |
||
Строка 5: | Строка 5: | ||
== Методы нормализации == | == Методы нормализации == | ||
+ | |||
=== Масштабирование === | === Масштабирование === | ||
Один из ДНК-микрочипов выбирается в качестве базового, затем все остальные масштабируются таким образом, чтобы их средняя интенсивность равнялась средней интенсивности базового (этот способ эквивалентен построению линейной регрессии каждого чипа на базовый и последующей нормализации при помощи регрессионной функции). | Один из ДНК-микрочипов выбирается в качестве базового, затем все остальные масштабируются таким образом, чтобы их средняя интенсивность равнялась средней интенсивности базового (этот способ эквивалентен построению линейной регрессии каждого чипа на базовый и последующей нормализации при помощи регрессионной функции). | ||
- | Для большей устойчивости можно использовать усечённое среднее. Так, в стандартном программном обеспечении производителя микрочипов Affymetrix перед подсчётом среднего отбрасываются по | + | Для большей устойчивости можно использовать усечённое среднее. Так, в стандартном программном обеспечении производителя микрочипов Affymetrix перед подсчётом среднего отбрасываются по 2 % наибольших и наименьших значений интенсивности. Другая модификация — масштабирование к средней интенсивности не по всему базовому чипу, а по каждому подмножеству его проб, соответствующих одному гену. |
Affymetrix предлагает использовать этот вид нормализации на последнем этапе предобработки, применяя масштабирование непосредственно к матрицам экспрессии, однако, возможно и его применение к матрицам интенсивности. | Affymetrix предлагает использовать этот вид нормализации на последнем этапе предобработки, применяя масштабирование непосредственно к матрицам экспрессии, однако, возможно и его применение к матрицам интенсивности. | ||
- | === Нелинейные методы=== | + | 1. Выбрать столбец <tex>j</tex> матрицы <tex>X</tex> в качестве базового. |
+ | |||
+ | 2. Вычислить (усечённое) среднее <tex>\tilde{X}_j</tex> по столбцу <tex>j</tex> | ||
+ | |||
+ | 3. Для всех остальных столбцов матрицы <tex>X</tex>: вычислить (усечённое) среднее <tex>\tilde{X}_i</tex> по столбцу <tex>i</tex>; вычислить <tex>\beta_i=\tilde{X}_j/\tilde{X}_i</tex>; каждый элемент столбца <tex>i</tex> умножить на <tex>\beta_i</tex>. | ||
+ | |||
+ | === Нелинейные методы === | ||
+ | Предложено большое количество нелинейных способов | ||
cross-validated splines<ref name="splines">Schadt EE, Li C, Ellis B. Feature extraction and normalization algorithms for high-density oligonucleotide gene expression array data. Journal of Cellular Biochemistry, Suppl. 2001;37:120-125. http://www.hsph.harvard.edu/~cli/pdf/Schadt_01.pdf</ref>, | cross-validated splines<ref name="splines">Schadt EE, Li C, Ellis B. Feature extraction and normalization algorithms for high-density oligonucleotide gene expression array data. Journal of Cellular Biochemistry, Suppl. 2001;37:120-125. http://www.hsph.harvard.edu/~cli/pdf/Schadt_01.pdf</ref>, | ||
running median lines<ref name="mlines">Li C, Wong WH. Model-based analysis of oligonucleotide arrays: model validation, design issues and standard error application. Genome Biology. 2001;2(8):RESEARCH0032. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC55329/</ref>, | running median lines<ref name="mlines">Li C, Wong WH. Model-based analysis of oligonucleotide arrays: model validation, design issues and standard error application. Genome Biology. 2001;2(8):RESEARCH0032. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC55329/</ref>, | ||
loess smoothers<ref name="smoothers">Bolstad BM, Irizarry RA, Astrand M, Speed TP. A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics. 2003;19(2):185-193. http://www.ncbi.nlm.nih.gov/pubmed/12538238</ref> | loess smoothers<ref name="smoothers">Bolstad BM, Irizarry RA, Astrand M, Speed TP. A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics. 2003;19(2):185-193. http://www.ncbi.nlm.nih.gov/pubmed/12538238</ref> | ||
- | === Квантильная нормализация=== | + | === Квантильная нормализация === |
+ | |||
=== Циклическая нормализация при помощи локальной регрессии === | === Циклическая нормализация при помощи локальной регрессии === | ||
[[Алгоритм LOWESS]] | [[Алгоритм LOWESS]] |
Версия 14:43, 6 мая 2010
Нормализация - важный этап предобработки ДНК-микрочипов, позволяющий сделать несколько рассматриваемых в эксперименте чипов пригодными к сравнению между собой. Основная цель анализа на этом этапе - исключить влияние систематических небиологических различий между микрочипами. Источников таких различий множество: вариации эффективности обратной транскрипции, маркировки красителями, гибридизации, физические различия между чипами (повреждения, царапины), небольшие различия в концентрации реагентов, вариация лабораторных условий.
Содержание |
Парадигмы нормализации
Нормализация на все гены, нормализация на гены домашнего хозяйства, нормализация на стабильные гены[1]
Методы нормализации
Масштабирование
Один из ДНК-микрочипов выбирается в качестве базового, затем все остальные масштабируются таким образом, чтобы их средняя интенсивность равнялась средней интенсивности базового (этот способ эквивалентен построению линейной регрессии каждого чипа на базовый и последующей нормализации при помощи регрессионной функции).
Для большей устойчивости можно использовать усечённое среднее. Так, в стандартном программном обеспечении производителя микрочипов Affymetrix перед подсчётом среднего отбрасываются по 2 % наибольших и наименьших значений интенсивности. Другая модификация — масштабирование к средней интенсивности не по всему базовому чипу, а по каждому подмножеству его проб, соответствующих одному гену.
Affymetrix предлагает использовать этот вид нормализации на последнем этапе предобработки, применяя масштабирование непосредственно к матрицам экспрессии, однако, возможно и его применение к матрицам интенсивности.
1. Выбрать столбец матрицы в качестве базового.
2. Вычислить (усечённое) среднее по столбцу
3. Для всех остальных столбцов матрицы : вычислить (усечённое) среднее по столбцу ; вычислить ; каждый элемент столбца умножить на .
Нелинейные методы
Предложено большое количество нелинейных способов cross-validated splines[1], running median lines[1], loess smoothers[1]