Метод Белсли
Материал из MachineLearning.
(Новая: Линейные регрессионные модели часто используются для исследования зависимости между ответом и приз...) |
м (→Анализ коллинеарности) |
||
Строка 8: | Строка 8: | ||
Где <tex>U</tex> - n x p ортогональная матрица, <tex>D</tex> - p x p верхняя диагональная матрица, чьи неотрицательные элементы являются сингулярными значениями <tex>X</tex>, <tex>V</tex> - p x p ортогональная матрица, чьи колонки это собственные вектора <tex>X^T X</tex>. Если существует коллинеарная зависимоть, то | Где <tex>U</tex> - n x p ортогональная матрица, <tex>D</tex> - p x p верхняя диагональная матрица, чьи неотрицательные элементы являются сингулярными значениями <tex>X</tex>, <tex>V</tex> - p x p ортогональная матрица, чьи колонки это собственные вектора <tex>X^T X</tex>. Если существует коллинеарная зависимоть, то | ||
будут какие-либо сингулярные значения, скажем, (р - s), которые близки к нулю. | будут какие-либо сингулярные значения, скажем, (р - s), которые близки к нулю. | ||
+ | Предположим, что <tex>d_{jj}</tex>, или просто <tex>d_{j}</tex>, элементы матрицы <tex>D</tex> упорядочены так, что <br/> | ||
+ | <tex>d_{1} \geq d_{2} \geq ...\geq d_{s} \geq ... \geq d_{p} \geq 0 </tex><br/> | ||
+ | И рассмотрим разбиение<br/> | ||
+ | <tex> | ||
+ | D=\begin{bmatrix} D_{s\times s} & O_{s \times (p-s)} \\ O_{(p-s) \times s} & D_{(p-s)\times (p-s)} \end{bmatrix}. | ||
+ | </tex> | ||
+ | |||
==Анализ полученных данных== | ==Анализ полученных данных== | ||
== Смотри также == | == Смотри также == | ||
== Литература == | == Литература == |
Версия 14:36, 27 июня 2010
Линейные регрессионные модели часто используются для исследования зависимости между ответом и признаками, однако результаты часто сомнительны, так как данные не всегда подходящие. Например, при большом количестве признаков часто многие из них сильно зависимы друг от друга, и эта зависимость уменьшает вероятность получения адекватных результатов. Belsley, Kuh и Welsch предложили метод анализа мультиколлинеарности основанный на индексах обусловленности(the scaled condition indexes) и дисперсионных долях(the variance-decomposition proportions).
Содержание |
Анализ коллинеарности
Линейная регрессионная модель:
где - n-мерный ветор ответа(зависимой переменной), - n x p (n>p) матрица признаков - p-мерный вектор неизвестных коэффициентов, - p-мерный вектор случайного возмущения с нулевым матожиданием и ковариационной матрицей , где это n x n единичная матрица, а . Будем считать что имеет ранг p.
Если есть коллинеарность между признаками согласно Belsley имеет смысл использовать сингулярное разложение(SVD) чтобы определить вовлеченные переменные. Матрица сингулярного разложения определяется как:
Где - n x p ортогональная матрица, - p x p верхняя диагональная матрица, чьи неотрицательные элементы являются сингулярными значениями , - p x p ортогональная матрица, чьи колонки это собственные вектора . Если существует коллинеарная зависимоть, то
будут какие-либо сингулярные значения, скажем, (р - s), которые близки к нулю.
Предположим, что , или просто , элементы матрицы упорядочены так, что
И рассмотрим разбиение