Метод Белсли
Материал из MachineLearning.
(→Разложение линейной модели: переработка) |
(→Разложение линейной модели) |
||
Строка 16: | Строка 16: | ||
<tex> | <tex> | ||
D=\begin{pmatrix} D_{s\times s} & O_{s \times (p-s)} \\ O_{(p-s) \times s} & D_{(p-s)\times (p-s)} \end{pmatrix}. | D=\begin{pmatrix} D_{s\times s} & O_{s \times (p-s)} \\ O_{(p-s) \times s} & D_{(p-s)\times (p-s)} \end{pmatrix}. | ||
- | </tex> (3) | + | </tex> (3)<br/> |
Для такого разбиения <tex>D_{s\times s}</tex> и <tex>D_{(p-s)\times (p-s)}</tex> -- диагональные матрицы, а оставшиеся два недиагональных блока -- нулевые. | Для такого разбиения <tex>D_{s\times s}</tex> и <tex>D_{(p-s)\times (p-s)}</tex> -- диагональные матрицы, а оставшиеся два недиагональных блока -- нулевые. | ||
Матрица <tex>D_{s\times s} = D_S</tex> содержит достаточно большие сингулярные значения, а <tex>D_{(p-s)\times (p-s)} = D_N</tex> содержит близкие к нулю сингулярные значения. | Матрица <tex>D_{s\times s} = D_S</tex> содержит достаточно большие сингулярные значения, а <tex>D_{(p-s)\times (p-s)} = D_N</tex> содержит близкие к нулю сингулярные значения. |
Версия 15:27, 28 августа 2010
Belsley, Kuh и Welsch предложили метод анализа мультиколлинеарности основанный на индексах обусловленности(the scaled condition indexes) и дисперсионных долях(the variance-decomposition proportions).
Коллеги, пожалуйста, сделайте пояснения к выкладкам. Статью трудно читать. Очень нужен список литературы: откуда взят этот материал? --Strijov 18:53, 27 августа 2010 (MSD) |
Содержание |
Разложение линейной модели
Рассматривается линейная регрессионная модель:
(1)
где -– -мерный вектор зависимой переменной, -- , матрица признаков, -- -мерный вектор неизвестных коэффициентов, параметров линейной регрессионной модели.
Предполагается, что -мерный вектор случайного возмущения имеет нулевое матожидание и ковариационную матрицу , где -- единичная матрица, а . Будем считать что имеет ранг .
Если есть коллинеарность между признаками согласно Бэлсли имеет смысл использовать сингулярное разложение(SVD), чтобы определить вовлеченные переменные. Матрица сингулярного разложения определяется как:
(2)
Здесь матрица -- ортогональная. Матрица -- диагональная прямоугольная, на диагонали которой стоят неотрицательные числа, сингулярными значениями . Диагональной прямоугольной назовем матрицу, ненулевые элементы которой имеют координаты вида Матрица -- ортогональная, ее столбцы -- собственные вектора .
Существование коллинеарной зависимости влечет близость к нулю некоторых сингулярных значений.
Будем считать, что сингулярных значений близки к нулю.
Предположим, что , или просто , элементы матрицы упорядочены так, что
Рассмотрим разбиение
(3)
Для такого разбиения и -- диагональные матрицы, а оставшиеся два недиагональных блока -- нулевые.
Матрица содержит достаточно большие сингулярные значения, а содержит близкие к нулю сингулярные значения.
Теперь разделим и :
(4)
где и соответствуют первым наибольшим сингулярным значениям, а и содержат векторов, соответствующих малым сингулярным значениям.
Матрица ортогональна, т.е. , так же как и и . Таким образом
выполнено
(5)
Так как тоже ортогональная, то верно
(6)
Здесь -- нулевая матрица размера .
Таким образом, используя (2)-(6), запишем разложение:
(7)
Обозначим слагаемые в правой части как
(8)
Заметим что получившиеся матрицы ортогональны:
(9)
что обеспечивает возможность ортогонального разложения :
(10)
Согласно нашим предположениям имеет ранг , и, следовательно, и имеют ранг и соответственно. Тогда для разложения (2) :
(11)
Далее получаем
(12)
и
(13)
Равенства в (12) и (13) получаются из (8) и (10), ссылаясь на то, что из ортогональности следует .
Это значит что полученная нами матрица содержит всю информацию и только ее, входящую в , и при этом свободна от коллинеарности, связанной с остальными собственными векторами.
Соответственно содержит только информацию связанную с коллинеарностью.
Она порождает дополнительное пространство .
Это пространство, связанное с элементами матрицы близкими к нулю, называется квази-нулевым пространством.
Следовательно, предложенное разложение выделяет , часть , содержащую основных компонентов, которые в меньшей степени коллинеарны.
же содержит информацию связанную с компонентами которые участвуют в коллинеарных зависимостях. Переменные, входящие в коллинеарности, это те, которые имеют наибольшие координаты в столбцах матрицы .
Вектор минимизирует ошибку методом наименьших квадратов:
(14)
где -- псевдообратная матрица . Последнее равенство выполняется только если имеет полный ранг. Используя предыдущее разложение может быть показано что:
(15)
Последнее равенство использует то, что
-- сингулярное разложение и, следовательно, . Для аналогично.
Подставляя (15) и (7) в (14) получаем выражение для параметров модели:
(16)
Окончательно модель:
(17)
Здесь -- вектор регрессионных остатков.
Из (15) получаем выражение для ковариации параметров модели:
(18)
Элементы на главной диагонали это VIF, которые могут быть разложены на компоненты, соответствующие каждому и
Выявление мультиколлинеарности
Когда есть мультиколлинеарность одино или более собственных значений близко к нулю, и соответствующие им собственные вектора содержат информацию о зависимостях между признаками. Выведеное разложение помогает выявить какие переменные показывают наибольшую вовлеченность в зависимости.
Из (16) получаем:
(19)
где и . Значения и зависят от элементов и , и от соотношений которые играют основную роль в объяснении соотношений между признаками. всегда больше нуля(мы считаем что ранг равен p), тогда как принимает значения от -1 до 1. Отрицательные значения могут вести к и разных знаков, и один из них может иметь абсолютное значение больше . Что касается собственных векторов соответствующих очень малым значениям собственных значений, то известно, что с большими абсолютными значениями озночают что соответствующие переменные сильно вовлечены в мультиколлинеарность. Если несколько собственных значений близки к нулю, то мы можем увеличить порядок (p-s) по шагам используя разложение (7) и обычно мы будем наблюдать уменьшение абсолютных значений и увеличение . Когда (p-s) соответствует числу индексов обусловленности показывающих существование зависимостей может рассматриваться как общие значения параметров метода наименьших квадратов. Это актуально, когда знак какого-либо параметра не является таким как ожидалось, и в целом это зависит от мультиколлинеарности.С помощью разложения, как уже отмечалось, мы можем получить что будет иметь нужный знак, в то время как часть значения перешедшего (благодаря коллинеарности) будет иметь противоположный знак и большее абсолютное значение.
Чтобы исследовать влияние коллинеарности на параметры линейной регрессии лучше, ковариационная матрица может быть переписана:
(20)
и
(21)
Отклонение каждого может быть выражено как
(22)
Из (18) мы можем разделить отклонение:
(23)
Так как сингулярные значения близки к нулю,то если соответствующие не очень малы, второй член будет больше первого, т.к отклонение будет больше чем .Тогда по мере увеличения размерности квази-нуль пространства, мы можем ожидать, что переменные, которые более активно участвовуют в коллинеарных отношениях, связанных с собственными векторами принадлежащими этому пространству должны будут уменьшать значения и увеличивать .