Описание окрестности точки наибольшего правдоподобия моделей (пример)
Материал из MachineLearning.
(→Алгоритм) |
(→Постановка задачи) |
||
Строка 2: | Строка 2: | ||
Пусть задана выборка <tex>D = \{(\mathbf{x}^i, y^i\)}</tex> из m пар. | Пусть задана выборка <tex>D = \{(\mathbf{x}^i, y^i\)}</tex> из m пар. | ||
- | <tex> | + | <tex>\{\mathbf{x}^i\}^m_{i=1}</tex> - множество из m объектов, |
<tex>\mathbf{x}^i = [x^i_1, \ldots, x^i_n]^T \in\mathbb{R}^n</tex> , где n - количество признаков, а | <tex>\mathbf{x}^i = [x^i_1, \ldots, x^i_n]^T \in\mathbb{R}^n</tex> , где n - количество признаков, а | ||
<tex>y^i\in\mathbb{R}</tex> - соответствующая зависимая переменная. | <tex>y^i\in\mathbb{R}</tex> - соответствующая зависимая переменная. |
Версия 12:16, 15 декабря 2010
Содержание |
Постановка задачи
Пусть задана выборка из m пар.
- множество из m объектов, , где n - количество признаков, а - соответствующая зависимая переменная.
- вектор значений j-ого признака, а - вектор целевого признака.
Пусть - множество индексов объектов,
- множество индексов признаков. - подмножество активных признаков.
Множество задаёт регрессионную модель , а - сложность модели.
Рассмотрим следующую линейную модель регрессии, описывающую связь между свободными и зависимой переменными
где - вектор параметров регрессии.
Пусть случайная аддитивная переменная регрессионной модели имеет нормальное распределение .
Распределение зависимой переменной будет иметь следующий вид:
где - сумма квадратов невязок . Согласно оценки точки наибольшего правдоподобия, данное распределение задаёт критерий качества модели, равный сумме квадратов регрессионных остатков.
где - некоторое множество индексов. Этот критерий используется при выборе модели в дальнейшем.
Требуется найти такую модель оптимальной структуры признаков , которая доставляет наименьшее значение функционалу качества (2).
Порождение свободных переменных
Множества измеряемых признаков бывает недостаточно для построения модели удовлетворительного качества. Требуется расширить множество признаков с помощью функциональных преобразований.
Предлагается следующий способ порождения новых признаков:
Пусть задано множество свободных переменных и конечное множество порождающих функций .
Обозначим , где индекс .
Рассмотрим декартово произведение , где элементу ставится в соответствие суперпозиция , однозначно определяемая индексами .
В качестве модели, описывающей отношение между зависимой переменной и свободными переменными , используется полином Колмогорова-Габора:
где и .
- множество индексов, размерности N.
Алгоритм
Рассмотрим алгоритм, состоящий из двух шагов.
На первом шаге мы будем добавлять признаки один за другим к нашей модели согласно критерию качества модели (2).
На втором шаге мы будем удалять признаки по одному из нашей модели согласно тому же критерию качества (2).
Пусть на -ом шагу алгоритма имеется множество признаков , которое определяет матрицу : . На нулевом шаге . Опишем -ый шаг алгоритма.
1. "Шаг добавления"
Добавляем признак
Вычислительный эксперимент
Исходный код
Литература
- Стрижов В.В Методы выбора регрессионных моделей. — ВЦ РАН, 2010.