Участник:Pavlov99

Материал из MachineLearning.

(Различия между версиями)
Перейти к: навигация, поиск
(Программирование)
Строка 52: Строка 52:
===Программирование===
===Программирование===
 +
[https://github.com/pavlov99/pmll/blob/master/matlab/GetBelsley.m Метод Белсли]
 +
[https://github.com/pavlov99/pmll/blob/master/matlab/GetVif.m VIF]
Вычисление полного функционала качества: графики сходимости <tex>\alpha</tex>, <tex>\beta</tex>, <tex>\eps</tex>
Вычисление полного функционала качества: графики сходимости <tex>\alpha</tex>, <tex>\beta</tex>, <tex>\eps</tex>
-
 
==Статьи на ресурсе==
==Статьи на ресурсе==
* [http://www.machinelearning.ru/wiki/index.php?title=EM-%D0%B0%D0%BB%D0%B3%D0%BE%D1%80%D0%B8%D1%82%D0%BC_%D1%81_%D0%BF%D0%BE%D1%81%D0%BB%D0%B5%D0%B4%D0%BE%D0%B2%D0%B0%D1%82%D0%B5%D0%BB%D1%8C%D0%BD%D1%8B%D0%BC_%D0%B4%D0%BE%D0%B1%D0%B0%D0%B2%D0%BB%D0%B5%D0%BD%D0%B8%D0%B5%D0%BC_%D0%BA%D0%BE%D0%BC%D0%BF%D0%BE%D0%BD%D0%B5%D0%BD%D1%82_%28%D0%BF%D1%80%D0%B8%D0%BC%D0%B5%D1%80%29 EM-алгоритм с последовательным добавлением компонент]
* [http://www.machinelearning.ru/wiki/index.php?title=EM-%D0%B0%D0%BB%D0%B3%D0%BE%D1%80%D0%B8%D1%82%D0%BC_%D1%81_%D0%BF%D0%BE%D1%81%D0%BB%D0%B5%D0%B4%D0%BE%D0%B2%D0%B0%D1%82%D0%B5%D0%BB%D1%8C%D0%BD%D1%8B%D0%BC_%D0%B4%D0%BE%D0%B1%D0%B0%D0%B2%D0%BB%D0%B5%D0%BD%D0%B8%D0%B5%D0%BC_%D0%BA%D0%BE%D0%BC%D0%BF%D0%BE%D0%BD%D0%B5%D0%BD%D1%82_%28%D0%BF%D1%80%D0%B8%D0%BC%D0%B5%D1%80%29 EM-алгоритм с последовательным добавлением компонент]
* [http://www.machinelearning.ru/wiki/index.php?title=%D0%A0%D0%B0%D0%B7%D1%80%D0%B0%D0%B1%D0%BE%D1%82%D0%BA%D0%B0_%D0%B0%D0%BB%D0%B3%D0%BE%D1%80%D0%B8%D1%82%D0%BC%D0%BE%D0%B2_%D1%80%D0%B0%D0%BD%D0%B3%D0%BE%D0%B2%D0%BE%D0%B9_%D1%80%D0%B5%D0%B3%D1%80%D0%B5%D1%81%D1%81%D0%B8%D0%B8_%D0%B4%D0%BB%D1%8F_%D0%BA%D1%80%D0%B5%D0%B4%D0%B8%D1%82%D0%BD%D0%BE%D0%B3%D0%BE_%D1%81%D0%BA%D0%BE%D1%80%D0%B8%D0%BD%D0%B3%D0%B0_%28%D0%BE%D1%82%D1%87%D0%B5%D1%82%29 разработка алгоритмов ранговой регрессии]
* [http://www.machinelearning.ru/wiki/index.php?title=%D0%A0%D0%B0%D0%B7%D1%80%D0%B0%D0%B1%D0%BE%D1%82%D0%BA%D0%B0_%D0%B0%D0%BB%D0%B3%D0%BE%D1%80%D0%B8%D1%82%D0%BC%D0%BE%D0%B2_%D1%80%D0%B0%D0%BD%D0%B3%D0%BE%D0%B2%D0%BE%D0%B9_%D1%80%D0%B5%D0%B3%D1%80%D0%B5%D1%81%D1%81%D0%B8%D0%B8_%D0%B4%D0%BB%D1%8F_%D0%BA%D1%80%D0%B5%D0%B4%D0%B8%D1%82%D0%BD%D0%BE%D0%B3%D0%BE_%D1%81%D0%BA%D0%BE%D1%80%D0%B8%D0%BD%D0%B3%D0%B0_%28%D0%BE%D1%82%D1%87%D0%B5%D1%82%29 разработка алгоритмов ранговой регрессии]

Версия 15:25, 23 февраля 2011

New Jarsey 2008
New Jarsey 2008

Содержание

О себе

  • Студент МФТИ, ФУПМ, 674гр,
  • Учусь в ШАДе на анализе данных
  • Работаю в Яндексе
  • Гик.

Научные интересы

  • Машинное обучение: классификация, регрессия, ранжирование
  • Оптимизация
  • Статистика, теория вероятности

Программирование

  • Пишу на C++, Python, MATLAB/Octave, awk, bash
  • emacs

План научной работы

Презентация

  • 1. Постановка прикладной задачи
  • 2. Новый подход (принцип)
  • 3. Авторы, годы, названия методов
  • 4. Постановка задачи
  • 5(2) Правдоподобные параметры и функционал качества без \alpha
  • 6(2) Вероятность параметров p(w | D, A, B) и полный функционал качества
  • 7 Правдоподобие модели
  • 8(2) IRLS, оценка матрицы B
  • 9 Кратко оценка матрица A
  • 10 Итеративный алгоритм вычисления оценки параметров и гиперпараметров модели
  • 11 Оценка правдоподобия модели
  • 12(5) Графики, примеры вычисления оценок
  • 13 Многоуровневая модель, мотивация
  • 14 EM-алгоритм и разбиение выборки
  • 15 Общий функционал качества для многоуровневой модели
  • 16 Описание алгоритма
  • 17 Вычислительный эксперимент
  • 18 Результаты

Обзор литературы

Математика

Данная часть требует осмысления, как и топология c сопутствующими теоремами.

Lorem ipsum dolor sit amet, consectetur adipiscing elit.

Программирование

Метод Белсли VIF Вычисление полного функционала качества: графики сходимости \alpha, \beta, \eps

Статьи на ресурсе

Личные инструменты