Прогнозирование функциями дискретного аргумента (пример)

Материал из MachineLearning.

(Различия между версиями)
Перейти к: навигация, поиск
Строка 2: Строка 2:
==Введение==
==Введение==
-
В отчете представлена попытка прогнозирования таких специфических временных рядов, как монофонические мелодии. Были осуществлены три различных подхода: [[экспоненциальное сглаживание]], локальное прогнозирование и поиск постоянных закономерностей.
+
В статье представлена попытка прогнозирования таких специфических временных рядов, как монофонические мелодии. Были осуществлены три различных подхода: [[экспоненциальное сглаживание]], локальное прогнозирование и поиск постоянных закономерностей.
Предлагается опробовать первый метод в традиционной его форме, чтобы ответить на вопрос, пригоден ли он для решения данной задачи. Затем предлагается во втором методе проверить работоспособность коэффициента корреляции Пирсона в качестве меры сходства. Третий будет использоваться в упрощенном варианте.
Предлагается опробовать первый метод в традиционной его форме, чтобы ответить на вопрос, пригоден ли он для решения данной задачи. Затем предлагается во втором методе проверить работоспособность коэффициента корреляции Пирсона в качестве меры сходства. Третий будет использоваться в упрощенном варианте.
 +
 +
==Постановка задачи==
 +
 +
Мелодия есть функция <tex>m: \ T \rightarrow X\times Y</tex>, где <tex>T = 0, 1, 2, ...$</tex> ~--- позиция ноты, <tex>X = 0, 1, 2, ...</tex> ~--- конечное множество нот, занумерованных в порядке увеличения тона, <tex>Y</tex> ~--- длительность ноты, в секундах. Таким образом, будем работать с пучком из двух временных рядов.
 +
 +
 +
 +
Предполагается, что мелодия дана законченная, но без нескольких финальных нот(в данной статье одной). Необходимо их предсказать.

Версия 16:28, 3 сентября 2011

Содержание

Введение

В статье представлена попытка прогнозирования таких специфических временных рядов, как монофонические мелодии. Были осуществлены три различных подхода: экспоненциальное сглаживание, локальное прогнозирование и поиск постоянных закономерностей.

Предлагается опробовать первый метод в традиционной его форме, чтобы ответить на вопрос, пригоден ли он для решения данной задачи. Затем предлагается во втором методе проверить работоспособность коэффициента корреляции Пирсона в качестве меры сходства. Третий будет использоваться в упрощенном варианте.

Постановка задачи

Мелодия есть функция m: \ T \rightarrow X\times Y, где T = 0, 1, 2, ...$ ~--- позиция ноты, X = 0, 1, 2, ... ~--- конечное множество нот, занумерованных в порядке увеличения тона, Y ~--- длительность ноты, в секундах. Таким образом, будем работать с пучком из двух временных рядов.


Предполагается, что мелодия дана законченная, но без нескольких финальных нот(в данной статье одной). Необходимо их предсказать.