Прогнозирование функциями дискретного аргумента (пример)
Материал из MachineLearning.
Строка 48: | Строка 48: | ||
При краткосрочном прогнозировании желательно как можно быстрее отразить новые изменения и в то же время как можно лучше "очистить" ряд от случайных колебаний. | При краткосрочном прогнозировании желательно как можно быстрее отразить новые изменения и в то же время как можно лучше "очистить" ряд от случайных колебаний. | ||
- | Т.о. следует увеличивать вес более свежих наблюдений: <tex> \alpha \rightarrow 1,\; \hat{y}_{t+d} \rightarrow y_t</tex>. | + | Т.о. следует увеличивать вес более свежих наблюдений: |
+ | <tex> \alpha \rightarrow 1,\; \hat{y}_{t+d} \rightarrow y_t</tex>. | ||
+ | |||
С другой стороны, для сглаживания случайных отклонений, <tex>\alpha</tex> нужно уменьшить: <tex> \alpha \rightarrow 0,\; \hat{y}_{t+1} \rightarrow \bar{y}_t</tex>. | С другой стороны, для сглаживания случайных отклонений, <tex>\alpha</tex> нужно уменьшить: <tex> \alpha \rightarrow 0,\; \hat{y}_{t+1} \rightarrow \bar{y}_t</tex>. | ||
Т.о. эти два требования находятся в противоречии. Мы будем брать <tex>\alpha</tex> из интервала (0,0.5). | Т.о. эти два требования находятся в противоречии. Мы будем брать <tex>\alpha</tex> из интервала (0,0.5). |
Версия 16:50, 3 сентября 2011
|
Введение
В статье представлена попытка прогнозирования таких специфических временных рядов, как монофонические мелодии. Были осуществлены три различных подхода: экспоненциальное сглаживание, локальное прогнозирование и поиск постоянных закономерностей.
Предлагается опробовать первый метод в традиционной его форме, чтобы ответить на вопрос, пригоден ли он для решения данной задачи. Затем предлагается во втором методе проверить работоспособность коэффициента корреляции Пирсона в качестве меры сходства. Третий будет использоваться в упрощенном варианте.
Постановка задачи
Мелодия есть функция , где — позиция ноты, — конечное множество нот, занумерованных в порядке увеличения тона, — длительность ноты, в секундах. Таким образом, будем работать с пучком из двух временных рядов.
Предполагается, что мелодия дана законченная, но без нескольких финальных нот(в данной статье одной). Необходимо их предсказать.
Пути решения задачи
Экспоненциальное сглаживание
Пусть — временной ряд.
Экспоненциальное сглаживание ряда осуществляется по рекуррентной формуле:
Чем меньше , тем в большей степени фильтруются, подавляются колебания исходного ряда и шума.
Если последовательно использовать рекуррентное это соотношение, то экспоненциальную среднюю можно выразить через значения временного ряда .
После появления работ Р. Брауна экспоненциальное сглаживание часто используется для решения задачи краткосрочного прогнозирования временных рядов следующим способом.
Пусть задан временной ряд: .
Необходимо решить задачу прогнозирования временного ряда, т.е. найти
— горизонт прогнозирования, необходимо, чтобы
Предположим, что D - невелико (краткосрочный прогноз), то для решения такой задачи используют модель Брауна.
.
Если рассматривать прогноз на 1 шаг вперед, то — погрешность этого прогноза, а новый прогноз получается в результате корректировки предыдущего прогноза с учетом его ошибки — суть адаптации.
При краткосрочном прогнозировании желательно как можно быстрее отразить новые изменения и в то же время как можно лучше "очистить" ряд от случайных колебаний. Т.о. следует увеличивать вес более свежих наблюдений: .
С другой стороны, для сглаживания случайных отклонений, нужно уменьшить: . Т.о. эти два требования находятся в противоречии. Мы будем брать из интервала (0,0.5).