Прогнозирование функциями дискретного аргумента (пример)
Материал из MachineLearning.
Строка 24: | Строка 24: | ||
Чем меньше <tex>\alpha</tex>, тем в большей степени фильтруются, подавляются колебания исходного ряда и шума. | Чем меньше <tex>\alpha</tex>, тем в большей степени фильтруются, подавляются колебания исходного ряда и шума. | ||
- | |||
Если последовательно использовать рекуррентное это соотношение, то экспоненциальную среднюю <tex>S_t</tex> можно выразить через значения временного ряда <tex>X</tex>. | Если последовательно использовать рекуррентное это соотношение, то экспоненциальную среднюю <tex>S_t</tex> можно выразить через значения временного ряда <tex>X</tex>. | ||
Строка 32: | Строка 31: | ||
После появления работ Р. Брауна экспоненциальное сглаживание часто используется для решения задачи краткосрочного прогнозирования временных рядов следующим способом. | После появления работ Р. Брауна экспоненциальное сглаживание часто используется для решения задачи краткосрочного прогнозирования временных рядов следующим способом. | ||
- | |||
Пусть задан временной ряд: <tex>y_i \cdot\cdot\cdot y_t,\; y_i \in R</tex>. | Пусть задан временной ряд: <tex>y_i \cdot\cdot\cdot y_t,\; y_i \in R</tex>. | ||
- | |||
Необходимо решить задачу прогнозирования временного ряда, т.е. найти | Необходимо решить задачу прогнозирования временного ряда, т.е. найти | ||
Строка 42: | Строка 39: | ||
Предположим, что D - невелико (краткосрочный прогноз), то для решения такой задачи используют модель Брауна. | Предположим, что D - невелико (краткосрочный прогноз), то для решения такой задачи используют модель Брауна. | ||
- | |||
<tex>\hat{y}_{t+d}=\alpha y_t + ( 1-\alpha ) \hat{y}_t,\; \hat{y}_0 = y_0,\; \alpha \in (0,1)</tex>. | <tex>\hat{y}_{t+d}=\alpha y_t + ( 1-\alpha ) \hat{y}_t,\; \hat{y}_0 = y_0,\; \alpha \in (0,1)</tex>. | ||
- | |||
Если рассматривать прогноз на 1 шаг вперед, то <tex>\left(y_t - \hat{y}_t\right)</tex> — погрешность этого прогноза, а новый прогноз <tex>\hat{y}_{t+1}</tex> получается в результате корректировки предыдущего прогноза с учетом его ошибки — суть адаптации. | Если рассматривать прогноз на 1 шаг вперед, то <tex>\left(y_t - \hat{y}_t\right)</tex> — погрешность этого прогноза, а новый прогноз <tex>\hat{y}_{t+1}</tex> получается в результате корректировки предыдущего прогноза с учетом его ошибки — суть адаптации. | ||
Строка 59: | Строка 54: | ||
Музыкальный временной ряд отличается от обычного хаотического: он почти не хаотичен (для специалистов, я думаю, слово "почти"\ можно убрать). В нем встречаются похожие, повторяющиеся и прочие регулярные структуры. | Музыкальный временной ряд отличается от обычного хаотического: он почти не хаотичен (для специалистов, я думаю, слово "почти"\ можно убрать). В нем встречаются похожие, повторяющиеся и прочие регулярные структуры. | ||
- | + | <i>Регулярной структурой</i> назовем кусок временного ряда, обладающий автономностью по отношению к остальному временному ряду, склонный к повторению в немного искаженной форме. | |
- | + | ||
- | <i>Регулярной структурой</i> назовем кусок временного ряда, обладающий автономностью по отношению к остальному временному ряду, склонный к повторению в немного искаженной форме | + | |
- | . | + | |
Очевидно, что "немного" должно определяться некой функцией близости. В работе использовался вариант коэффициента корреляции Неймана-Пирсона: | Очевидно, что "немного" должно определяться некой функцией близости. В работе использовался вариант коэффициента корреляции Неймана-Пирсона: | ||
- | |||
<center><tex> | <center><tex> | ||
k(f,g) = \frac{\int fg}{\sqrt{\int f^2}\cdot\sqrt{\int g^2}}, | k(f,g) = \frac{\int fg}{\sqrt{\int f^2}\cdot\sqrt{\int g^2}}, | ||
- | |||
</tex></center> | </tex></center> | ||
где интеграл понимается в смысле суммы в силу дискретности функций. | где интеграл понимается в смысле суммы в силу дискретности функций. | ||
- | |||
Прогноз будет строиться на естественном предположении компактности регулярных структур: у похожих кусков временного ряда должны быть похожие продолжения. | Прогноз будет строиться на естественном предположении компактности регулярных структур: у похожих кусков временного ряда должны быть похожие продолжения. | ||
- | |||
Воспользуемся самым простым локальным алгоритмом, который ищет ближайшего соседа к прогнозируемому участку. | Воспользуемся самым простым локальным алгоритмом, который ищет ближайшего соседа к прогнозируемому участку. |
Версия 17:11, 3 сентября 2011
|
Введение
В статье представлена попытка прогнозирования таких специфических временных рядов, как монофонические мелодии. Были осуществлены три различных подхода: экспоненциальное сглаживание, локальное прогнозирование и поиск постоянных закономерностей.
Предлагается опробовать первый метод в традиционной его форме, чтобы ответить на вопрос, пригоден ли он для решения данной задачи. Затем предлагается во втором методе проверить работоспособность коэффициента корреляции Пирсона в качестве меры сходства. Третий будет использоваться в упрощенном варианте.
Постановка задачи
Мелодия есть функция , где — позиция ноты, — конечное множество нот, занумерованных в порядке увеличения тона, — длительность ноты, в секундах. Таким образом, будем работать с пучком из двух временных рядов.
Предполагается, что мелодия дана законченная, но без нескольких финальных нот(в данной статье одной). Необходимо их предсказать.
Пути решения задачи
Экспоненциальное сглаживание
Пусть — временной ряд.
Экспоненциальное сглаживание ряда осуществляется по рекуррентной формуле:
Чем меньше , тем в большей степени фильтруются, подавляются колебания исходного ряда и шума. Если последовательно использовать рекуррентное это соотношение, то экспоненциальную среднюю можно выразить через значения временного ряда .
После появления работ Р. Брауна экспоненциальное сглаживание часто используется для решения задачи краткосрочного прогнозирования временных рядов следующим способом. Пусть задан временной ряд: . Необходимо решить задачу прогнозирования временного ряда, т.е. найти
— горизонт прогнозирования, необходимо, чтобы
Предположим, что D - невелико (краткосрочный прогноз), то для решения такой задачи используют модель Брауна. . Если рассматривать прогноз на 1 шаг вперед, то — погрешность этого прогноза, а новый прогноз получается в результате корректировки предыдущего прогноза с учетом его ошибки — суть адаптации.
При краткосрочном прогнозировании желательно как можно быстрее отразить новые изменения и в то же время как можно лучше "очистить" ряд от случайных колебаний. Т.о. следует увеличивать вес более свежих наблюдений: . С другой стороны, для сглаживания случайных отклонений, нужно уменьшить: . Т.о. эти два требования находятся в противоречии. Мы будем брать из интервала (0,0.5).
Локальные методы прогнозирования
Музыкальный временной ряд отличается от обычного хаотического: он почти не хаотичен (для специалистов, я думаю, слово "почти"\ можно убрать). В нем встречаются похожие, повторяющиеся и прочие регулярные структуры.
Регулярной структурой назовем кусок временного ряда, обладающий автономностью по отношению к остальному временному ряду, склонный к повторению в немного искаженной форме. Очевидно, что "немного" должно определяться некой функцией близости. В работе использовался вариант коэффициента корреляции Неймана-Пирсона:
где интеграл понимается в смысле суммы в силу дискретности функций. Прогноз будет строиться на естественном предположении компактности регулярных структур: у похожих кусков временного ряда должны быть похожие продолжения. Воспользуемся самым простым локальным алгоритмом, который ищет ближайшего соседа к прогнозируемому участку.