Прогнозирование функциями дискретного аргумента (пример)
Материал из MachineLearning.
м |
|||
Строка 62: | Строка 62: | ||
Прогноз будет строиться на естественном предположении компактности регулярных структур: у похожих кусков временного ряда должны быть похожие продолжения. | Прогноз будет строиться на естественном предположении компактности регулярных структур: у похожих кусков временного ряда должны быть похожие продолжения. | ||
Воспользуемся самым простым локальным алгоритмом, который ищет ближайшего соседа к прогнозируемому участку. | Воспользуемся самым простым локальным алгоритмом, который ищет ближайшего соседа к прогнозируемому участку. | ||
+ | |||
+ | == Литература == | ||
+ | {{Задание|Егор Будников|В.В.Стрижов|24 мая 2010|Ivanov|Strijov}} | ||
+ | [[Категория:Практика и вычислительные эксперименты]] |
Версия 16:29, 4 сентября 2011
|
Введение
В статье представлена попытка прогнозирования таких специфических временных рядов, как монофонические мелодии. Были осуществлены три различных подхода: экспоненциальное сглаживание, локальное прогнозирование и поиск постоянных закономерностей.
Предлагается опробовать первый метод в традиционной его форме, чтобы ответить на вопрос, пригоден ли он для решения данной задачи. Затем предлагается во втором методе проверить работоспособность коэффициента корреляции Пирсона в качестве меры сходства. Третий будет использоваться в упрощенном варианте.
Постановка задачи
Мелодия есть функция , где — позиция ноты, — конечное множество нот, занумерованных в порядке увеличения тона, — длительность ноты, в секундах. Таким образом, будем работать с пучком из двух временных рядов.
Предполагается, что мелодия дана законченная, но без нескольких финальных нот(в данной статье одной). Необходимо их предсказать.
Пути решения задачи
Экспоненциальное сглаживание
Пусть — временной ряд.
Экспоненциальное сглаживание ряда осуществляется по рекуррентной формуле:
Чем меньше , тем в большей степени фильтруются, подавляются колебания исходного ряда и шума. Если последовательно использовать рекуррентное это соотношение, то экспоненциальную среднюю можно выразить через значения временного ряда .
После появления работ Р. Брауна экспоненциальное сглаживание часто используется для решения задачи краткосрочного прогнозирования временных рядов следующим способом. Пусть задан временной ряд: . Необходимо решить задачу прогнозирования временного ряда, т.е. найти
— горизонт прогнозирования, необходимо, чтобы
.
Предположим, что D - невелико (краткосрочный прогноз), то для решения такой задачи используют модель Брауна. . Если рассматривать прогноз на 1 шаг вперед, то — погрешность этого прогноза, а новый прогноз получается в результате корректировки предыдущего прогноза с учетом его ошибки — суть адаптации.
При краткосрочном прогнозировании желательно как можно быстрее отразить новые изменения и в то же время как можно лучше "очистить" ряд от случайных колебаний. Т.о. следует увеличивать вес более свежих наблюдений: . С другой стороны, для сглаживания случайных отклонений, нужно уменьшить: . Т.о. эти два требования находятся в противоречии. Мы будем брать из интервала (0,0.5).
Локальные методы прогнозирования
Музыкальный временной ряд отличается от обычного хаотического: он почти не хаотичен (для специалистов, я думаю, слово "почти"\ можно убрать). В нем встречаются похожие, повторяющиеся и прочие регулярные структуры.
Регулярной структурой назовем кусок временного ряда, обладающий автономностью по отношению к остальному временному ряду, склонный к повторению в немного искаженной форме. Очевидно, что "немного" должно определяться некой функцией близости. В работе использовался вариант коэффициента корреляции Неймана-Пирсона:
где интеграл понимается в смысле суммы в силу дискретности функций. Прогноз будет строиться на естественном предположении компактности регулярных структур: у похожих кусков временного ряда должны быть похожие продолжения. Воспользуемся самым простым локальным алгоритмом, который ищет ближайшего соседа к прогнозируемому участку.
Литература
Данная статья является непроверенным учебным заданием.
До указанного срока статья не должна редактироваться другими участниками проекта MachineLearning.ru. По его окончании любой участник вправе исправить данную статью по своему усмотрению и удалить данное предупреждение, выводимое с помощью шаблона {{Задание}}. См. также методические указания по использованию Ресурса MachineLearning.ru в учебном процессе. |