Фоновая поправка в анализе ДНК-микрочипов
Материал из MachineLearning.
(→MAS 5.0) |
м (→LESN (Low End Signal is Noise)) |
||
(28 промежуточных версий не показаны.) | |||
Строка 1: | Строка 1: | ||
- | Фоновая поправка | + | Фоновая поправка — важный предварительный этап в анализе [[ДНК-микрочип]]ов. Его необходимость связана с наличием таких мешающих факторов, как шум оптической системы распознавания и неспецифическая гибридизация. |
+ | |||
+ | Изначально для анализа фонового эффекта была разработана система так называемых PM-MM проб. Помимо нуклеотидных зондов, в точности соответствующих последовательности каждого рассматриваемого гена (Perfect Match probes), на микрочипах Affymetrix GeneChip размещались зонды, в которых средний (тринадцатый) олигонуклеотид был заменён на комплементарный (Mismatch probe). Предполагалось, что по интенсивности MM-проб можно будет оценить эффект неспецифической гибридизации и вычесть его из интенсивности PM-проб. Этот подход сразу же продемонстрировал свою несостоятельность — было показано, что в среднем для ДНК-микрочипа интенсивность около 30% MM-проб превышает интенсивность соответствующих им PM-проб<ref name="notMM">Naef F, Lim DA, Patil N, Magnasco MO. From features to expression: High-density oligonucleotide array analysis revisited. 2001. http://arxiv.org/abs/physics/0102010/.</ref>. Из-за этого вычитание интенсивностей MM-проб приводит к бессмысленному результату, поскольку экспрессия гена оказывается отрицательной. | ||
+ | |||
+ | Ниже рассмотрены алгоритмы следующих поколений, делающие более изощрённую фоновую поправку. | ||
+ | |||
== Ideal mismatch == | == Ideal mismatch == | ||
- | + | Чтобы нейтрализовать эффект отрицательных значений экспрессии при вычитании интенсивности MM-проб, компанией Affymetrix была разработана концепция Ideal Mismatch<ref name="affIM">Affymetrix. Statistical algorithms reference guide. Technical report, Affymetrix, Santa Clara, CA, 2001. http://www.affymetrix.com/support/technical/technotes/statistical_reference_guide.pdf</ref>. Идея заключается в том, чтобы делать обычную PM-MM коррекцию там, где это возможно, а в остальных случаях вычитать из интенсивности PM-проб некоторую величину, меньшую интенсивности MM-проб. Для каждого множества проб, соответствующих одному участку ДНК, вычисляется значение специфической фоновой интенсивности <tex>SB</tex>, представляющее собой одношаговое [[Взвешенное среднее Тьюки|взвешенное среднее Тьюки]] по множеству логарифмов отношений PM-интенсивностей к MM-интенсивностям в каждой паре проб. Если <tex>i</tex> — номер пробы, а <tex>k</tex> — номер подмножества проб, то фоновый эффект оценивается следующим выражением: | |
- | + | ::<tex>IM_i^{(k)} = \left\{MM_i^{(k)}, \:\:\: MM_i^{(k)}<PM_i^{(k)},\\ \frac{PM_i^{(k)}}{2^{SB_k}}, \:\:\: MM_i^{(k)}\geq PM_i^{(k)}, \: SB_k>\tau_c, \\ \frac{PM_i^{(k)}}{2^{\tau_c/(1+(\tau_c-SB_k)/\tau_s)}}, \:\:\: MM_i^{(k)}\geq PM_i^{(k)}, \: SB_k\leq\tau_c, \right.</tex> | |
+ | ::<tex>SB_k=T_{bk}\left(\log_2 \frac{PM_i^{(k)}}{MM_i^{(k)}}, \:\:i=1,\ldots,n_k\right).</tex> | ||
- | <tex> | + | Здесь <tex>\tau_c</tex> и <tex>\tau_s</tex> — настраиваемые параметры: <tex>\tau_c</tex> — константа различия со значением по умолчанию 0.03, <tex>\tau_s</tex> — константа масштабирования со значением по умолчанию 10, <tex>T_{bk}</tex> — одношаговое [[Взвешенное среднее Тьюки|взвешенное среднее Тьюки]] с параметрами <tex>c=5, \eps=0.0001.</tex><br /> |
+ | Итоговое значение интенсивности для PM-проб с учётом фоновой поправки получается вычитанием из исходных значений интенсивностей PM-проб соответствующей им величины <tex>IM</tex>. | ||
+ | == RMA (Robust Multichip Average) == | ||
+ | Данный метод фоновой коррекции является частью комплекса RMA методов для предобработки данных ДНК-микрочипов<ref name="RMA"> Irizarry RA, Hobbs B, Collin F, et al. Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics. 2003;4(2):249-64. Available at: http://www.ncbi.nlm.nih.gov/pubmed/12925520.</ref>. Используются только данные PM-проб. Значения интенсивности по ним корректируются отдельно по каждому микрочипу с использованием следующей модели распределения интенсивностей проб. Нескорректированное значение интенсивности <tex>Y</tex> представляется в виде суммы нормально распределённого шума <tex>B</tex> со средним <tex>\mu</tex> и дисперсией <tex>\sigma^2</tex> и экспоненциально распределённого сигнала <tex>S</tex> со средним значением <tex>\alpha</tex>. Чтобы исключить возможность получения отрицательных значений интенсивности, рассматривается только неотрицательная часть нормального распределения шума. Оценка сигнала строится согласно следующей формуле: | ||
- | + | ::<tex>\hat{S}=\operatorname{E}\left(s\left|Y=y\right.\right)=a + b \frac{\phi\left(\frac{a}{b}\right)-\phi\left(\frac{y-a}{b}\right)} {\Phi\left(\frac{a}{b}\right) - \Phi\left(\frac{y-a}{b}\right) -1},</tex> | |
- | + | где <tex>a=y-\mu-\sigma^2\alpha,\:</tex> <tex>b=\sigma,\:</tex> <tex>\Phi</tex> и <tex>\phi</tex> — соответственно, функция распределения и плотность стандартного нормального распределения. Оценки параметров в алгоритме RMA строятся следующим образом. Пусть <tex> f(x)</tex> — эмпирическая плотность распределения интенсивностей на микрочипе, тогда | |
- | + | ::<tex> \hat{\mu}=\arg\max\left(f\left(x\right)\right)</tex> — среднее шума оценивается как мода распределения интенсивностей; | |
- | + | ::<tex>\hat{\sigma^2}</tex> выбирается путём подгонки нормального распределения под левый хвост эмпирической плотности распределения интенсивностей (множество <tex>x< \hat{\mu}</tex>); | |
- | + | ::<tex>\hat{\alpha}</tex> выбирается путём подгонки экспоненциального распределения под правый хвост эмпирической плотности распределения интенсивностей (множество <tex>x > \hat{\mu}</tex>). | |
- | == MAS 5.0 == | + | Использование таких ad hoc оценок объясняется невозможностью построить оценки более привычными методами: численные оценки методом максимального правдоподобия дают нестабильный результат, [[EM-алгоритм]] работает слишком медленно из-за большого объёма данных<ref name="bolstad"> Bolstad BM: Low Level Analysis of High-density Oligonucleotide Array Data: Background, Normalization and Summarization. Dissertation, Dept. of Statistics, University of California, Berkeley. 2004. Available at: http://www.bmbolstad.com/Dissertation/Bolstad_2004_Dissertation.pdf.</ref>. В то же время, в работе McGee, Chen, 2006<ref name="McGee"> McGee M, Chen Z: Parameter Estimation for the Exponential-Normal Convolution Model for Background Correction of Affymetrix GeneChip Data. Statistical Applications in Genetics and Molecular Biology 2006, 5:Article 24. Available at: http://www.bepress.com/sagmb/vol5/iss1/art24/.</ref> показано, что оценки параметров, используемые в RMA, далеки от оптимальных, и предложен ряд других способов построения оценок. C другой стороны, там же подчёркивается, что само используемое представление распределения интенсивностей в виде смеси нормального и экспоненциального зачастую неадеквано. |
+ | |||
+ | == DFCM (Distribution Free Convolution Model) == | ||
+ | В рамках данной модели, как и в модели алгоритма RMA, предполагается, что наблюдаемая интенсивность является суммой сигнала и шума: <tex>Y=S+B</tex>; однако, в отличие от RMA, не делается никаких предположений о распределениях компонент<ref name="Chen">Chen Z, McGee M, Liu Q, et al. A Distribution-Free Convolution Model for background correction of oligonucleotide microarray data. BMC genomics. 2009;10 Suppl 1:S19. Available at: http://www.ncbi.nlm.nih.gov/pubmed/19594878.</ref>. Алгоритм учёта фоновой поправки следующий. | ||
+ | # Выделяются наименьшие <tex>q_1</tex> процентов значений PM-интенсивностей (обычно доля <tex>q_1</tex> достаточно мала и не превышает 30%). | ||
+ | # Выделяются наименьшие <tex>q_2</tex> процентов (обычно 90% или 95%) значений MM-интенсивностей проб, соответствующих PM-пробам, отобранным на предыдущем шаге. Отобранные значения интенсивностей MM-проб далее служат мерой фонового шума. | ||
+ | # С использованием непараметрической [[Оценивание плотности распределения|оценки плотности распределения]] шума (как правило, ядерной оценки Епачечникова), ищется мода распределения шума <tex>\hat{\mu}</tex>. | ||
+ | # Оценкой стандартного отклонения шума служит <tex>\hat{\sigma}</tex> — выборочное стандартное отклонения шума со значениями интенсивностей, меньших <tex>\hat{\mu}</tex>, умноженное на <tex>\sqrt{2}</tex>. | ||
+ | # Значение интенсивности <tex>k</tex>-й пробы в <tex>i</tex>-м наборе проб, соответствующих одному гену, рассчитывается по следующей формуле: | ||
+ | ::<tex>s_{ki}=\left\{y_{ki}-\hat{\mu}, \:\:\: y_{ki}\geq\hat{\mu}+3\hat{\sigma}, \\ 1 + \left(y_{ki}-min\right) \left( \frac{3\hat{\sigma}-1}{\hat{\mu}+3\hat{\sigma}-min}\right), \:\:\: y_{ki}<\hat{\mu}+3\hat{\sigma}, \right.</tex> | ||
+ | где <tex>min</tex> — минимальное значение интенсивности (PM или MM проб). | ||
+ | |||
+ | Выбирая значения параметров <tex>q_1</tex> и <tex>q_2</tex>, мы хотим отобрать те значения PM-интенсивностей, которые достаточно малы для того, чтобы пренебречь неспецифической гибридизацией MM-фрагментов к PM-зондам, а затем отобрать такие соответствующие им MM-пробы, которые, скорее всего, не подвержены кросс-гибридизации. Параметр <tex>q_1</tex> может рассматриваться как мера доли PM-проб, соответствующим не экспрессированным генам. Любой MM-сигнал, соответствующий таким пробам, не может быть результатом неспецифической гибридизации, поскольку ген не экспрессирован. Значение параметра <tex>q_1</tex> выбирается таким, чтобы доля MM-проб с интенсивностью большей, чем у соответствующих им PM-проб для наименьших <tex>q_1</tex>% данных была примерно равна 50%. | ||
+ | |||
+ | == MAS 5.0 (Affymetrix Micro Array Suite 5.0) == | ||
[[Изображение:MAS.PNG|thumb|250px|Схема вычисления локальной фоновой поправки и её дисперсии в методе MAS 5.0]] | [[Изображение:MAS.PNG|thumb|250px|Схема вычисления локальной фоновой поправки и её дисперсии в методе MAS 5.0]] | ||
- | Данный метод делит каждый ДНК-микрочип на <tex>K</tex> (по умолчанию 16) прямоугольных областей одинаковой площади, в каждой из которых фоновая поправка оценивается с помощью 2%-квантиля (наименьших значений) интенсивности <tex>b_k</tex> | + | Данный метод делит каждый ДНК-микрочип на <tex>K</tex> (по умолчанию 16) прямоугольных областей одинаковой площади, в каждой из которых фоновая поправка оценивается с помощью 2%-квантиля (наименьших значений) интенсивности <tex>b_k;</tex> оценивается также дисперсия наименьших 2% значений интенсивности <tex>n_k</tex>. Затем фоновая поправка для каждой пробы с координатами <tex>\left(x,y\right)</tex> рассчитывается как взвешенное среднее всех <tex>k</tex> оценок: |
+ | ::<tex>b\left(x,y\right) = \frac{1}{\sum_{k=1}^K \omega_k\left(x,y\right)} \sum_{k=1}^K \omega_k\left(x,y\right)b_k</tex>. | ||
По аналогичной формуле с заменой <tex>b_k</tex> на <tex>n_k</tex> рассчитывается дисперсия фоновой поправки для каждой пробы. | По аналогичной формуле с заменой <tex>b_k</tex> на <tex>n_k</tex> рассчитывается дисперсия фоновой поправки для каждой пробы. | ||
- | Веса зависят от расстояния между пробой и центрами прямоугольных областей: | + | Веса зависят от расстояния между пробой и центрами прямоугольных областей: |
- | <tex>\omega_k\left(x,y\right) = \frac{1}{d_k^2\left(x,y\right)+s_0},</tex | + | ::<tex>\omega_k\left(x,y\right) = \frac{1}{d_k^2\left(x,y\right)+s_0},</tex> |
- | где <tex>d_k\left(x | + | где <tex>d_k\left(x,y\right)</tex> — евклидово расстояние между пробой и центром <tex>k</tex>-й ячейки, <tex>s_0</tex> — сглаживающий коэффициент (значение по умолчанию 100). |
+ | |||
+ | Скорректированное значение интенсивности рассчитывается по формуле | ||
+ | ::<tex>A\left(x,y\right)=\max(I(x,y)-b(x,y),\:NoiseFrac\ast n(x,y)),</tex> | ||
+ | где <tex>I(x,y)</tex> — исходное значение интенсивности, <tex>NoiseFrac</tex> — параметр, соответствующий доле учитываемой вариации фоновой интенсивности (значение по умолчанию 0.5). | ||
+ | |||
+ | == LESN (Low End Signal is Noise) == | ||
+ | Данный метод основывается на двух принципах: фоновая поправка должна сохранять порядок интенсивностей проб и наименьшим интенсивностям должна соответствовать наибольшая поправка<ref name="bolstad" />. | ||
+ | |||
+ | Обозначим через <tex>p_{\min}</tex> наименьшее значение интенсивности пробы на чипе. | ||
+ | Пусть <tex>w\left(P\right)</tex> — невозрастающая весовая функция, принимающая значения из <tex>[0, 1]</tex> и такая, что <tex>w\left(p_{\min}\right) = 1</tex>. | ||
+ | Тогда если <tex>P_i</tex> — интенсивность <tex>i</tex>-й пробы, то поправка вычисляется по следующей формуле: | ||
+ | ::<tex>P_i' = P_i - w\left(P_i\right)\left(p_{\min} - p_0\right)</tex>. | ||
+ | Здесь <tex>p_0</tex> — некоторая маленькая константа, необходимая для того, чтобы интенсивности не обращались в ноль. | ||
+ | |||
+ | В качестве весовой функции предлагается использовать экспоненциальную или гауссову: | ||
+ | ::<tex>w_E\left(P\right) = \exp\left(- \frac{P - p_{\min}}{\theta}\right)</tex>, | ||
+ | |||
+ | ::<tex>w_G\left(P\right) = \exp\left(- \frac{\left(P - p_{\min}\right)^2}{\theta^2}\right)</tex>. | ||
- | + | Отметим, что авторы рекомендуют перед вычислением поправок перейти к логарифмической шкале. | |
+ | == Примечания == | ||
+ | <references /> | ||
[[Категория:Биоинформатика]] | [[Категория:Биоинформатика]] | ||
{{Stub}} | {{Stub}} |
Текущая версия
Фоновая поправка — важный предварительный этап в анализе ДНК-микрочипов. Его необходимость связана с наличием таких мешающих факторов, как шум оптической системы распознавания и неспецифическая гибридизация.
Изначально для анализа фонового эффекта была разработана система так называемых PM-MM проб. Помимо нуклеотидных зондов, в точности соответствующих последовательности каждого рассматриваемого гена (Perfect Match probes), на микрочипах Affymetrix GeneChip размещались зонды, в которых средний (тринадцатый) олигонуклеотид был заменён на комплементарный (Mismatch probe). Предполагалось, что по интенсивности MM-проб можно будет оценить эффект неспецифической гибридизации и вычесть его из интенсивности PM-проб. Этот подход сразу же продемонстрировал свою несостоятельность — было показано, что в среднем для ДНК-микрочипа интенсивность около 30% MM-проб превышает интенсивность соответствующих им PM-проб[1]. Из-за этого вычитание интенсивностей MM-проб приводит к бессмысленному результату, поскольку экспрессия гена оказывается отрицательной.
Ниже рассмотрены алгоритмы следующих поколений, делающие более изощрённую фоновую поправку.
Содержание |
Ideal mismatch
Чтобы нейтрализовать эффект отрицательных значений экспрессии при вычитании интенсивности MM-проб, компанией Affymetrix была разработана концепция Ideal Mismatch[1]. Идея заключается в том, чтобы делать обычную PM-MM коррекцию там, где это возможно, а в остальных случаях вычитать из интенсивности PM-проб некоторую величину, меньшую интенсивности MM-проб. Для каждого множества проб, соответствующих одному участку ДНК, вычисляется значение специфической фоновой интенсивности , представляющее собой одношаговое взвешенное среднее Тьюки по множеству логарифмов отношений PM-интенсивностей к MM-интенсивностям в каждой паре проб. Если — номер пробы, а — номер подмножества проб, то фоновый эффект оценивается следующим выражением:
Здесь и — настраиваемые параметры: — константа различия со значением по умолчанию 0.03, — константа масштабирования со значением по умолчанию 10, — одношаговое взвешенное среднее Тьюки с параметрами
Итоговое значение интенсивности для PM-проб с учётом фоновой поправки получается вычитанием из исходных значений интенсивностей PM-проб соответствующей им величины .
RMA (Robust Multichip Average)
Данный метод фоновой коррекции является частью комплекса RMA методов для предобработки данных ДНК-микрочипов[1]. Используются только данные PM-проб. Значения интенсивности по ним корректируются отдельно по каждому микрочипу с использованием следующей модели распределения интенсивностей проб. Нескорректированное значение интенсивности представляется в виде суммы нормально распределённого шума со средним и дисперсией и экспоненциально распределённого сигнала со средним значением . Чтобы исключить возможность получения отрицательных значений интенсивности, рассматривается только неотрицательная часть нормального распределения шума. Оценка сигнала строится согласно следующей формуле:
где и — соответственно, функция распределения и плотность стандартного нормального распределения. Оценки параметров в алгоритме RMA строятся следующим образом. Пусть — эмпирическая плотность распределения интенсивностей на микрочипе, тогда
- — среднее шума оценивается как мода распределения интенсивностей;
- выбирается путём подгонки нормального распределения под левый хвост эмпирической плотности распределения интенсивностей (множество );
- выбирается путём подгонки экспоненциального распределения под правый хвост эмпирической плотности распределения интенсивностей (множество ).
Использование таких ad hoc оценок объясняется невозможностью построить оценки более привычными методами: численные оценки методом максимального правдоподобия дают нестабильный результат, EM-алгоритм работает слишком медленно из-за большого объёма данных[1]. В то же время, в работе McGee, Chen, 2006[1] показано, что оценки параметров, используемые в RMA, далеки от оптимальных, и предложен ряд других способов построения оценок. C другой стороны, там же подчёркивается, что само используемое представление распределения интенсивностей в виде смеси нормального и экспоненциального зачастую неадеквано.
DFCM (Distribution Free Convolution Model)
В рамках данной модели, как и в модели алгоритма RMA, предполагается, что наблюдаемая интенсивность является суммой сигнала и шума: ; однако, в отличие от RMA, не делается никаких предположений о распределениях компонент[1]. Алгоритм учёта фоновой поправки следующий.
- Выделяются наименьшие процентов значений PM-интенсивностей (обычно доля достаточно мала и не превышает 30%).
- Выделяются наименьшие процентов (обычно 90% или 95%) значений MM-интенсивностей проб, соответствующих PM-пробам, отобранным на предыдущем шаге. Отобранные значения интенсивностей MM-проб далее служат мерой фонового шума.
- С использованием непараметрической оценки плотности распределения шума (как правило, ядерной оценки Епачечникова), ищется мода распределения шума .
- Оценкой стандартного отклонения шума служит — выборочное стандартное отклонения шума со значениями интенсивностей, меньших , умноженное на .
- Значение интенсивности -й пробы в -м наборе проб, соответствующих одному гену, рассчитывается по следующей формуле:
где — минимальное значение интенсивности (PM или MM проб).
Выбирая значения параметров и , мы хотим отобрать те значения PM-интенсивностей, которые достаточно малы для того, чтобы пренебречь неспецифической гибридизацией MM-фрагментов к PM-зондам, а затем отобрать такие соответствующие им MM-пробы, которые, скорее всего, не подвержены кросс-гибридизации. Параметр может рассматриваться как мера доли PM-проб, соответствующим не экспрессированным генам. Любой MM-сигнал, соответствующий таким пробам, не может быть результатом неспецифической гибридизации, поскольку ген не экспрессирован. Значение параметра выбирается таким, чтобы доля MM-проб с интенсивностью большей, чем у соответствующих им PM-проб для наименьших % данных была примерно равна 50%.
MAS 5.0 (Affymetrix Micro Array Suite 5.0)
Данный метод делит каждый ДНК-микрочип на (по умолчанию 16) прямоугольных областей одинаковой площади, в каждой из которых фоновая поправка оценивается с помощью 2%-квантиля (наименьших значений) интенсивности оценивается также дисперсия наименьших 2% значений интенсивности . Затем фоновая поправка для каждой пробы с координатами рассчитывается как взвешенное среднее всех оценок:
- .
По аналогичной формуле с заменой на рассчитывается дисперсия фоновой поправки для каждой пробы.
Веса зависят от расстояния между пробой и центрами прямоугольных областей:
где — евклидово расстояние между пробой и центром -й ячейки, — сглаживающий коэффициент (значение по умолчанию 100).
Скорректированное значение интенсивности рассчитывается по формуле
где — исходное значение интенсивности, — параметр, соответствующий доле учитываемой вариации фоновой интенсивности (значение по умолчанию 0.5).
LESN (Low End Signal is Noise)
Данный метод основывается на двух принципах: фоновая поправка должна сохранять порядок интенсивностей проб и наименьшим интенсивностям должна соответствовать наибольшая поправка[1].
Обозначим через наименьшее значение интенсивности пробы на чипе. Пусть — невозрастающая весовая функция, принимающая значения из и такая, что . Тогда если — интенсивность -й пробы, то поправка вычисляется по следующей формуле:
- .
Здесь — некоторая маленькая константа, необходимая для того, чтобы интенсивности не обращались в ноль.
В качестве весовой функции предлагается использовать экспоненциальную или гауссову:
- ,
- .
Отметим, что авторы рекомендуют перед вычислением поправок перейти к логарифмической шкале.