Участник:EvgSokolov/Песочница
Материал из MachineLearning.
м |
|||
Строка 15: | Строка 15: | ||
* <tex>\theta_{in}</tex> — экспрессия гена <tex>n</tex> на <tex>i</tex>-м микрочипе. | * <tex>\theta_{in}</tex> — экспрессия гена <tex>n</tex> на <tex>i</tex>-м микрочипе. | ||
* <tex>\phi_{jn}</tex> — коэффициент сродства пробы <tex>j</tex> гену <tex>n</tex>. | * <tex>\phi_{jn}</tex> — коэффициент сродства пробы <tex>j</tex> гену <tex>n</tex>. | ||
- | * <tex>\gamma_{jkn}</tex> — | + | * <tex>\gamma_{jkn}</tex> — случайная ошибка, вызывающая различия между партиями проб. |
- | * <tex>\varepsilon_{ijkn}</tex> — случайная ошибка | + | * <tex>\varepsilon_{ijkn}</tex> — случайная ошибка, вызывающая различия между пробами на чипах одной партии. |
В данной модели предполагается, что пробы на разных чипах имеют одинаковую дисперсию случайной ошибки: <tex>\mathbb{D} \varepsilon_{ijkn} = \sigma_{jn}^2</tex>. | В данной модели предполагается, что пробы на разных чипах имеют одинаковую дисперсию случайной ошибки: <tex>\mathbb{D} \varepsilon_{ijkn} = \sigma_{jn}^2</tex>. | ||
Строка 29: | Строка 29: | ||
Непосредственная настройка модели {{eqref|1}} при наличии выбросов в обучающей выборке крайне сложна, поэтому предлагается перейти к более простой задаче. | Непосредственная настройка модели {{eqref|1}} при наличии выбросов в обучающей выборке крайне сложна, поэтому предлагается перейти к более простой задаче. | ||
- | + | Рассматривается упрощенная модель | |
::<tex> Y_{ijn} = \theta_{in} + \phi_{jn} + \varepsilon_{ijn} </tex>. | ::<tex> Y_{ijn} = \theta_{in} + \phi_{jn} + \varepsilon_{ijn} </tex>. | ||
- | + | По обучающей выборке находятся робастные оценки параметров <tex>\hat \theta_{in} </tex> и <tex> \hat \phi_{jn} </tex> для данной модели. | |
Затем вычисляются остатки <tex>r_{ijkn} = Y_{ijkn} - \left( \hat \theta_{in} + \hat \phi_{jn} \right) </tex>, с помощью которых оцениваются дисперсии <tex>\sigma_{jn}^2</tex> и <tex>\tau_{jn}^n</tex>: | Затем вычисляются остатки <tex>r_{ijkn} = Y_{ijkn} - \left( \hat \theta_{in} + \hat \phi_{jn} \right) </tex>, с помощью которых оцениваются дисперсии <tex>\sigma_{jn}^2</tex> и <tex>\tau_{jn}^n</tex>: | ||
- | ::<tex> \hat \ | + | ::<tex> \hat \tau_{jn}^2 = \frac{1}{K} \sum_{k = 1}^{K} \left( \bar r_{.jkn} - \bar r_{.j.n} \right)^2</tex>; |
- | ::<tex> \hat \ | + | ::<tex> \hat \sigma_{jn}^2 = \frac{1}{K} \sum_{k = 1}^{K} \frac{1}{I_k} \sum_{i = 1}^{I_k} \left( r_{ijkn} - \bar r_{.jkn} \right)^2</tex>, |
где <tex>\bar r_{.jkn} = \frac{1}{I_k} \sum_{i = 1}^{I_k} r_{ijkn},\; \bar r_{.j.n} = \frac{1}{K} \sum_{k = 1}^{K} \frac{1}{I_k} \sum_{i = 1}^{I_k} r_{ijkn} </tex>. | где <tex>\bar r_{.jkn} = \frac{1}{I_k} \sum_{i = 1}^{I_k} r_{ijkn},\; \bar r_{.j.n} = \frac{1}{K} \sum_{k = 1}^{K} \frac{1}{I_k} \sum_{i = 1}^{I_k} r_{ijkn} </tex>. | ||
+ | |||
+ | === Обработка новых чипов === | ||
+ | |||
+ | Рассмотрим процесс обработки новых чипов. | ||
+ | Сначала делается фоновая поправка всех чипов методом RMA-свертки, затем с помощью квантильной нормализации интенсивности новых чипов приводятся к представительному распределению, полученному на этапе обучения. Последним шагом является суммаризация, которая подробно описана ниже. | ||
+ | |||
+ | В первую очередь делается поправка интенсивностей проб для учета коэффициента сродства: | ||
+ | ::<tex> Y_{ijln}^* = Y_{ijln} - \hat \phi_{jn} \approx \theta_{in} + \gamma_{jkn} + \varepsilon_{ijkn} </tex> | ||
+ | |||
+ | Далее из скорректированных интенсивностей нужно получить робастную оценку для <tex>\theta</tex>. | ||
+ | Это делается разными способами в зависимости от того, сколько новых чипов требуется обработать. |
Версия 21:11, 22 октября 2011
fRMA (Frozen Robust Multi-Array Analysis)
Рассматривается следующая модель уровня экспрессии:
Здесь используются следующие обозначения:
- — номер партии микрочипов . Два чипа относятся к одной партии, если эксперименты с ними были проведены в одной лаборатории в одно и то же время.
- — номер микрочипа .
- — номер набора проб . Также через мы будем обозначать номер гена, соответствующего -му набору проб.
- — номер пробы .
- — предобработанная (с вычтенным фоном и нормализованная) логарифмированная интенсивность пробы из набора проб микрочипа из партии микрочипов .
- — экспрессия гена на -м микрочипе.
- — коэффициент сродства пробы гену .
- — случайная ошибка, вызывающая различия между партиями проб.
- — случайная ошибка, вызывающая различия между пробами на чипах одной партии.
В данной модели предполагается, что пробы на разных чипах имеют одинаковую дисперсию случайной ошибки: . Также делается предположение, что — это случайная величина, дисперсия которой не зависит от партии чипов: .
Обучение модели
Для обучения необходимы данные с большого числа микрочипов.
Сначала ко всем микрочипам применяется метод квантильной нормализации, приводящий все данные к одному распределению. В дальнейшем мы будем называть это распределение «представительным».
Непосредственная настройка модели (1) при наличии выбросов в обучающей выборке крайне сложна, поэтому предлагается перейти к более простой задаче. Рассматривается упрощенная модель
- .
По обучающей выборке находятся робастные оценки параметров и для данной модели. Затем вычисляются остатки , с помощью которых оцениваются дисперсии и :
- ;
- ,
где .
Обработка новых чипов
Рассмотрим процесс обработки новых чипов. Сначала делается фоновая поправка всех чипов методом RMA-свертки, затем с помощью квантильной нормализации интенсивности новых чипов приводятся к представительному распределению, полученному на этапе обучения. Последним шагом является суммаризация, которая подробно описана ниже.
В первую очередь делается поправка интенсивностей проб для учета коэффициента сродства:
Далее из скорректированных интенсивностей нужно получить робастную оценку для . Это делается разными способами в зависимости от того, сколько новых чипов требуется обработать.