Участник:EvgSokolov/Песочница

Материал из MachineLearning.

(Различия между версиями)
Перейти к: навигация, поиск
м
Строка 15: Строка 15:
* <tex>\theta_{in}</tex> — экспрессия гена <tex>n</tex> на <tex>i</tex>-м микрочипе.
* <tex>\theta_{in}</tex> — экспрессия гена <tex>n</tex> на <tex>i</tex>-м микрочипе.
* <tex>\phi_{jn}</tex> — коэффициент сродства пробы <tex>j</tex> гену <tex>n</tex>.
* <tex>\phi_{jn}</tex> — коэффициент сродства пробы <tex>j</tex> гену <tex>n</tex>.
-
* <tex>\gamma_{jkn}</tex> — поправка к коэффициенту сродства, учитывающая различия между партиями проб.
+
* <tex>\gamma_{jkn}</tex> — случайная ошибка, вызывающая различия между партиями проб.
-
* <tex>\varepsilon_{ijkn}</tex> — случайная ошибка с нулевым средним.
+
* <tex>\varepsilon_{ijkn}</tex> — случайная ошибка, вызывающая различия между пробами на чипах одной партии.
В данной модели предполагается, что пробы на разных чипах имеют одинаковую дисперсию случайной ошибки: <tex>\mathbb{D} \varepsilon_{ijkn} = \sigma_{jn}^2</tex>.
В данной модели предполагается, что пробы на разных чипах имеют одинаковую дисперсию случайной ошибки: <tex>\mathbb{D} \varepsilon_{ijkn} = \sigma_{jn}^2</tex>.
Строка 29: Строка 29:
Непосредственная настройка модели {{eqref|1}} при наличии выбросов в обучающей выборке крайне сложна, поэтому предлагается перейти к более простой задаче.
Непосредственная настройка модели {{eqref|1}} при наличии выбросов в обучающей выборке крайне сложна, поэтому предлагается перейти к более простой задаче.
-
Рассмотрим упрощенную модель
+
Рассматривается упрощенная модель
::<tex> Y_{ijn} = \theta_{in} + \phi_{jn} + \varepsilon_{ijn} </tex>.
::<tex> Y_{ijn} = \theta_{in} + \phi_{jn} + \varepsilon_{ijn} </tex>.
-
Данная модель с помощью робастного метода настраивается по обучающей выборке для получения оценок параметров <tex>\hat \theta_{in} </tex> и <tex> \hat \phi_{jn} </tex>.
+
По обучающей выборке находятся робастные оценки параметров <tex>\hat \theta_{in} </tex> и <tex> \hat \phi_{jn} </tex> для данной модели.
Затем вычисляются остатки <tex>r_{ijkn} = Y_{ijkn} - \left( \hat \theta_{in} + \hat \phi_{jn} \right) </tex>, с помощью которых оцениваются дисперсии <tex>\sigma_{jn}^2</tex> и <tex>\tau_{jn}^n</tex>:
Затем вычисляются остатки <tex>r_{ijkn} = Y_{ijkn} - \left( \hat \theta_{in} + \hat \phi_{jn} \right) </tex>, с помощью которых оцениваются дисперсии <tex>\sigma_{jn}^2</tex> и <tex>\tau_{jn}^n</tex>:
-
::<tex> \hat \sigma_{jn}^2 = \frac{1}{K} \sum_{k = 1}^{K} \left( \bar r_{.jkn} - \bar r_{.j.n} \right)^2</tex>;
+
::<tex> \hat \tau_{jn}^2 = \frac{1}{K} \sum_{k = 1}^{K} \left( \bar r_{.jkn} - \bar r_{.j.n} \right)^2</tex>;
-
::<tex> \hat \tau_{jn}^2 = \frac{1}{K} \sum_{k = 1}^{K} \frac{1}{I_k} \sum_{i = 1}^{I_k} \left( r_{ijkn} - \bar r_{.jkn} \right)^2</tex>,
+
::<tex> \hat \sigma_{jn}^2 = \frac{1}{K} \sum_{k = 1}^{K} \frac{1}{I_k} \sum_{i = 1}^{I_k} \left( r_{ijkn} - \bar r_{.jkn} \right)^2</tex>,
где <tex>\bar r_{.jkn} = \frac{1}{I_k} \sum_{i = 1}^{I_k} r_{ijkn},\; \bar r_{.j.n} = \frac{1}{K} \sum_{k = 1}^{K} \frac{1}{I_k} \sum_{i = 1}^{I_k} r_{ijkn} </tex>.
где <tex>\bar r_{.jkn} = \frac{1}{I_k} \sum_{i = 1}^{I_k} r_{ijkn},\; \bar r_{.j.n} = \frac{1}{K} \sum_{k = 1}^{K} \frac{1}{I_k} \sum_{i = 1}^{I_k} r_{ijkn} </tex>.
 +
 +
=== Обработка новых чипов ===
 +
 +
Рассмотрим процесс обработки новых чипов.
 +
Сначала делается фоновая поправка всех чипов методом RMA-свертки, затем с помощью квантильной нормализации интенсивности новых чипов приводятся к представительному распределению, полученному на этапе обучения. Последним шагом является суммаризация, которая подробно описана ниже.
 +
 +
В первую очередь делается поправка интенсивностей проб для учета коэффициента сродства:
 +
::<tex> Y_{ijln}^* = Y_{ijln} - \hat \phi_{jn} \approx \theta_{in} + \gamma_{jkn} + \varepsilon_{ijkn} </tex>
 +
 +
Далее из скорректированных интенсивностей нужно получить робастную оценку для <tex>\theta</tex>.
 +
Это делается разными способами в зависимости от того, сколько новых чипов требуется обработать.

Версия 21:11, 22 октября 2011

fRMA (Frozen Robust Multi-Array Analysis)

Рассматривается следующая модель уровня экспрессии:

(1)
 Y_{ijkn} = \theta_{in} + \phi_{jn} + \gamma_{jkn} + \varepsilon_{ijkn}

Здесь используются следующие обозначения:

  • k — номер партии микрочипов  k \in 1, \dots, K . Два чипа относятся к одной партии, если эксперименты с ними были проведены в одной лаборатории в одно и то же время.
  • i — номер микрочипа  i \in 1, \dots, I_k .
  • n — номер набора проб  n \in 1, \dots, N . Также через n мы будем обозначать номер гена, соответствующего n-му набору проб.
  • j — номер пробы  i \in 1, \dots, J_n .
  • Y_{ijkn} — предобработанная (с вычтенным фоном и нормализованная) логарифмированная интенсивность пробы j из набора проб n микрочипа i из партии микрочипов k.
  • \theta_{in} — экспрессия гена n на i-м микрочипе.
  • \phi_{jn} — коэффициент сродства пробы j гену n.
  • \gamma_{jkn} — случайная ошибка, вызывающая различия между партиями проб.
  • \varepsilon_{ijkn} — случайная ошибка, вызывающая различия между пробами на чипах одной партии.

В данной модели предполагается, что пробы на разных чипах имеют одинаковую дисперсию случайной ошибки: \mathbb{D} \varepsilon_{ijkn} = \sigma_{jn}^2. Также делается предположение, что \gamma_{jkn} — это случайная величина, дисперсия которой не зависит от партии чипов: \mathbb{D} \gamma_{jkn} = \tau_{jn}^2.

Обучение модели

Для обучения необходимы данные с большого числа микрочипов.

Сначала ко всем микрочипам применяется метод квантильной нормализации, приводящий все данные к одному распределению. В дальнейшем мы будем называть это распределение «представительным».

Непосредственная настройка модели (1) при наличии выбросов в обучающей выборке крайне сложна, поэтому предлагается перейти к более простой задаче. Рассматривается упрощенная модель

 Y_{ijn} = \theta_{in} + \phi_{jn} + \varepsilon_{ijn} .

По обучающей выборке находятся робастные оценки параметров \hat \theta_{in} и  \hat \phi_{jn} для данной модели. Затем вычисляются остатки r_{ijkn} = Y_{ijkn} - \left( \hat \theta_{in} + \hat \phi_{jn} \right) , с помощью которых оцениваются дисперсии \sigma_{jn}^2 и \tau_{jn}^n:

 \hat \tau_{jn}^2 = \frac{1}{K} \sum_{k = 1}^{K} \left( \bar r_{.jkn} - \bar r_{.j.n} \right)^2;
 \hat \sigma_{jn}^2 = \frac{1}{K} \sum_{k = 1}^{K} \frac{1}{I_k} \sum_{i = 1}^{I_k} \left( r_{ijkn} - \bar r_{.jkn} \right)^2,

где \bar r_{.jkn} = \frac{1}{I_k} \sum_{i = 1}^{I_k} r_{ijkn},\; \bar r_{.j.n} = \frac{1}{K} \sum_{k = 1}^{K} \frac{1}{I_k} \sum_{i = 1}^{I_k} r_{ijkn} .

Обработка новых чипов

Рассмотрим процесс обработки новых чипов. Сначала делается фоновая поправка всех чипов методом RMA-свертки, затем с помощью квантильной нормализации интенсивности новых чипов приводятся к представительному распределению, полученному на этапе обучения. Последним шагом является суммаризация, которая подробно описана ниже.

В первую очередь делается поправка интенсивностей проб для учета коэффициента сродства:

 Y_{ijln}^* = Y_{ijln} - \hat \phi_{jn} \approx \theta_{in} + \gamma_{jkn} + \varepsilon_{ijkn}

Далее из скорректированных интенсивностей нужно получить робастную оценку для \theta. Это делается разными способами в зависимости от того, сколько новых чипов требуется обработать.

Личные инструменты