Статистический отчет при создании моделей
Материал из MachineLearning.
|  (→Постановка задачи) |  (→Описание решения) | ||
| Строка 44: | Строка 44: | ||
| * корреляции и ковариации коэффициентов регрессии; | * корреляции и ковариации коэффициентов регрессии; | ||
| * [[Статистика Дарбина-Уотсона|статистики Дарбина-Уотсона]]; | * [[Статистика Дарбина-Уотсона|статистики Дарбина-Уотсона]]; | ||
| - | * расстояния Махаланобиса между исходной  | + | * расстояния Махаланобиса между исходной и модельной зависимостями; | 
| * расстояния Кука (мера изменения прогноза при удалении одного объекта); | * расстояния Кука (мера изменения прогноза при удалении одного объекта); | ||
| * [[Доверительный интервал|доверительных интервалов]] для предсказанных значений. | * [[Доверительный интервал|доверительных интервалов]] для предсказанных значений. | ||
Версия 20:08, 1 ноября 2011
| 
 | 
В данной работе приведен обзор статистических методов оценивания качества регрессионных моделей, используемых популярными программами машинного обучения и статистической обработки данных. Приведены примеры вычисления и анализа полученных оценок.
Постановка задачи
Имеется пространство объектов-строк  и
пространство ответов 
.
Задана выборка 
.
Обозначеним:
-   матрица информации или матрица плана; 
-   вектор параметров; 
-   целевой вектор. 
Будем считать, что зависимость имеет вид
,
где     некоторая неслучайная функция, 
   случайная величина, 
с нулевым математически ожиданием.
В моделях многомерной линейной регрессии предполагается, что неслучайная составляющая имеет вид:
.
Требуется численно оценить качество модели при заданном векторе параметров .
Описание решения
Предполагая, 
что матрица ковариации вектора ошибки  имеет вид 
,
где 
, 
получаем выражение для оценки параметров 
 взвешенным методом наименьших квадратов:
Основными инструментами оценки качества линейной модели является анализ:
- регрессионных остатков;
- матрицы частных и получастных корреляций (условные корреляции);
- корреляции и ковариации коэффициентов регрессии;
- статистики Дарбина-Уотсона;
- расстояния Махаланобиса между исходной и модельной зависимостями;
- расстояния Кука (мера изменения прогноза при удалении одного объекта);
- доверительных интервалов для предсказанных значений.
Вычислительный эксперимент
Исходный код и полный текст работы
Смотри также
Литература
|   | Данная статья является непроверенным учебным заданием. 
 До указанного срока статья не должна редактироваться другими участниками проекта MachineLearning.ru. По его окончании любой участник вправе исправить данную статью по своему усмотрению и удалить данное предупреждение, выводимое с помощью шаблона {{Задание}}. См. также методические указания по использованию Ресурса MachineLearning.ru в учебном процессе. | 

