Публикация:Вапник 1979 Восстановление зависимостей
Материал из MachineLearning.
м |
|||
Строка 1: | Строка 1: | ||
- | {{ | + | <includeonly>{{Монография |
|автор = Вапник В. Н. | |автор = Вапник В. Н. | ||
|название = Восстановление зависимостей по эмпирическим данным | |название = Восстановление зависимостей по эмпирическим данным | ||
|издатель = М.: Наука | |издатель = М.: Наука | ||
|год = 1979 | |год = 1979 | ||
- | |||
|PageName = Публикация:Вапник 1979 Восстановление зависимостей <!-- {{subst:FULLPAGENAME}} --> | |PageName = Публикация:Вапник 1979 Восстановление зависимостей <!-- {{subst:FULLPAGENAME}} --> | ||
- | }}<noinclude> | + | }}</includeonly><noinclude>{{Монография |
+ | |автор = Вапник В. Н. | ||
+ | |название = Восстановление зависимостей по эмпирическим данным | ||
+ | |издатель = М.: Наука | ||
+ | |год = 1979 | ||
+ | |BibtexKey = vapnik79vosstanovlenie | ||
+ | }} | ||
== Аннотация == | == Аннотация == | ||
Основополагающая монография по статистической [[Теория Вапника-Червоненкиса|теории восстановления зависимостей]]. | Основополагающая монография по статистической [[Теория Вапника-Червоненкиса|теории восстановления зависимостей]]. |
Версия 16:03, 16 мая 2008
Вапник В. Н. Восстановление зависимостей по эмпирическим данным. — М.: Наука, 1979.
BibTeX: |
@book{vapnik79vosstanovlenie, author = "Вапник В. Н.", title = "Восстановление зависимостей по эмпирическим данным", publisher = "М.: Наука", year = "1979", language = russian } |
Аннотация
Основополагающая монография по статистической теории восстановления зависимостей. Рассматриваются задачи классификации, восстановления регрессии и интерпретации результатов косвенных экспериментов. Вводятся понятия функции роста, энтропии и ёмкости системы событий. Выводятся оценки скорости равномерной сходимости частоты ошибок к их вероятности, позволяющие обосновать метод минимизации эмпирического риска. Эти оценки нетривиальны только в том случае, когда ёмкость семейства алгоритмов много меньше длины обучающей выборки. В доказательствах используется комбинаторная техника, основанная на оценивании разности частот в двух подвыборках одинаковой длины. Выводятся необходимые и достаточные условия равномерной сходимости частот появления событий к их вероятностям; доказывается, что частота сходится к вероятности равномерно по системе событий тогда и только тогда, когда доля энтропии, приходящейся на один элемент выборки, стремится к нулю с ростом длины выборки. Доказывается, что ёмкость семейства линейных решающих правил равна числу свободных параметров. Предлагается метод упорядоченной минимизации суммарного риска, предназначенный для выбора модели алгоритмов оптимальной сложности. Новый метод, в отличие от ранее предложенного метода структурной минимизации риска, оценивает качество восстановления зависимости в конечном множестве точек, а не на всем пространстве, поэтому обладает более высокой точностью. Описывается ряд алгоритмов распознавания образов, восстановления регрессии, селекции выборки.