Статистический отчет при создании моделей
Материал из MachineLearning.
|  (→Модель №1) |  (→Вычислительный эксперимент) | ||
| Строка 80: | Строка 80: | ||
| Отчет, построенный программой: | Отчет, построенный программой: | ||
| - | < | + | <txt> | 
| Статистический анализ линейной модели                                                                                                                                                                                      | Статистический анализ линейной модели                                                                                                                                                                                      | ||
| Строка 104: | Строка 104: | ||
| Коэффициент множественной корреляции равен 3.8029  | Коэффициент множественной корреляции равен 3.8029  | ||
| - | </ | + | </txt> | 
| === Модель №2 === | === Модель №2 === | ||
Версия 21:16, 14 ноября 2011
| 
 | 
В данной работе приведен обзор статистических методов оценивания качества регрессионных моделей, используемых популярными программами машинного обучения и статистической обработки данных. Приведены примеры вычисления и анализа полученных оценок.
Постановка задачи
Имеется пространство объектов-строк  и
пространство ответов 
.
Задана выборка 
.
Обозначеним:
-   матрица информации или матрица плана; 
-   вектор параметров; 
-   целевой вектор. 
Будем считать, что зависимость имеет вид
,
где     некоторая неслучайная функция, 
   случайная величина, 
с нулевым математически ожиданием.
В моделях многомерной линейной регрессии предполагается, что неслучайная составляющая имеет вид:
.
Требуется численно оценить качество модели при заданном векторе параметров .
Описание решения
Предполагая, 
что матрица ковариации вектора ошибки  имеет вид 
,
где 
, 
получаем выражение для оценки параметров 
 взвешенным методом наименьших квадратов:
Основными инструментами оценки качества линейной модели является анализ:
- регрессионных остатков;
- матрицы частных и получастных корреляций (условные корреляции);
- корреляции и ковариации коэффициентов регрессии;
- статистики Дарбина-Уотсона;
- расстояния Махаланобиса между исходной и модельной зависимостями;
- расстояния Кука (мера изменения прогноза при удалении одного объекта);
- доверительных интервалов для предсказанных значений.
В работе рассматривается
-  анализ регрессионных остатков, включающий в себя:
- вычисление среднеквадратичной ошибки:
 
- вычисление коэффициента детерминации:
 
где 
- проверку гипотезы о равенстве нулю математического ожидания регрессионных остатков на основе критерия знаков;
- проверку гипотезы о равенстве дисперсий (пропорциональности с заданными коэффициентами) регрессионных остатков на основе критерия Ансари-Брэдли;
- проверку гипотезы о нормальности распределения регрессионных остатков на основе критерия хи-квадрат и критерия Жарка-Бера;
 
- вычисление расстояния Махаланобиса и Кука;
- вычисление корреляций признаков, корреляций признаков и значений моделируемой функции и коэффициента множественной регрессии.
Вычислительный эксперимент
В данном отчете представлены результаты применения созданного инструмента для анализа модели. Отчет состоит из трех экспериментов, демонстрирующих работу инструмента на различных по качеству моделях.
Вставляйте сюда неотформатированный текст.=== Модель №1 ===
Неизвестная зависимость:
.
Для построения модели использовалось  объектов независимо равномерно распределительных на отрезке 
В качестве шума использовались независимые случайные величины из распределения 
В качестве признаков использовались 
.
Параметры модели подбирались с помощью метода наименьших квадратов.
Отчет, построенный программой:
<txt> Статистический анализ линейной модели
Среднеквадратичная ошибка: 0.009639 Значение коэффициента детерминации R^2: 0.99999 Расстояние Кука: 1.0086 (соотношение между дисперсиями признаков не заданы пользователем) Расстояние Махаланобиса: 3.1018 (соотношение между дисперсиями признаков не заданы пользователем)
Гипотезу о равенстве нулю математического ожидания регрессионных остатков нельзя отвергнуть при уровне значимости 0.05. Для анализа использован критерий знаков. Значение статистики попало в 0.76418-хвост распределения. Гипотеза о равенстве дисперсий регрессионных остатков отвергнута при уровне значимости 0.05. Для анализа использован критерий Ансари-Брэдли. Значение статистики попало в 0.5466-хвост распределения. Гипотеза о нормальности распределения регрессионных остатков отвергнута при уровне значимости 0.05. Для анализа использован критерий хи-квадрат. Значение статистики попало в 0.05685-хвост распределения. Гипотеза о нормальности распределения регрессионных остатков отвергнута при уровне значимости 0.05. Для анализа использован критерий Жарка-Бера. Значение статистики попало в 0.5-хвост распределения.
Матрица корреляции признаков:
1 0.010935 0.99136
0.010935 1 -0.0061593
0.99136  -0.0061593           1                                                                                                                                                                                          
                                                                                                                                                                                                                         
Вектор корреляции признаков и значений функции:
0.97338
-0.21851
0.96916                                                                                                                                                                                                                  
                                                                                                                                                                                                                         
Коэффициент множественной корреляции равен 3.8029 </txt>
Модель №2
Неизвестная зависимость:
.
Для построения модели использовалось  объектов независимо равномерно распределительных на отрезке 
В качестве шума использовались независимые случайные величины из распределения 
В качестве признаков использовались 
.
Параметры модели подбирались с помощью метода наименьших квадратов.
Модель №3
Неизвестная зависимость:
.
Для построения модели использовалось  объектов независимо равномерно распределительных на отрезке 
В качестве шума использовались независимые случайные величины из распределения 
В качестве признаков использовались 
.
Параметры модели подбирались с помощью метода наименьших квадратов.
Исходный код и полный текст работы
Смотри также
Литература
|   | Данная статья является непроверенным учебным заданием. 
 До указанного срока статья не должна редактироваться другими участниками проекта MachineLearning.ru. По его окончании любой участник вправе исправить данную статью по своему усмотрению и удалить данное предупреждение, выводимое с помощью шаблона {{Задание}}. См. также методические указания по использованию Ресурса MachineLearning.ru в учебном процессе. | 




