Коэффициент корреляции Пирсона
Материал из MachineLearning.
м (→Слабые стороны) |
м |
||
(16 промежуточных версий не показаны.) | |||
Строка 1: | Строка 1: | ||
{{TOCright}} | {{TOCright}} | ||
- | |||
== Определение == | == Определение == | ||
- | + | Коэффициент корреляции Пирсона характеризует существование линейной зависимости между двумя величинами. | |
- | <tex>x=\left( x_1, \cdots , | + | Пусть даны две выборки <tex>x^m=\left( x_1, \cdots ,x_m \right), \; y^m=\left( y_1, \cdots ,y_m \right);</tex> коэффициент корреляции Пирсона рассчитывается по формуле: |
- | + | ::<tex>r_{xy} = \frac {\sum_{i=1}^{m} \left( x_i-\bar{x} \right)\left( y_i-\bar{y} \right)}{\sqrt{\sum_{i=1}^{m} \left( x_i-\bar{x} \right)^2 \sum_{i=1}^{m} \left( y_i-\bar{y} \right)^2}} = \frac {cov(x,y)}{\sqrt{s_x^2 s_y^2}},</tex> | |
- | <tex> | + | где <tex>\bar{x}, \bar{y}</tex> – выборочные средние <tex>x^m</tex> и <tex>y^m</tex>, <tex>s_x^2, s_y^2</tex> – выборочные дисперсии, <tex>r_{xy} \in \left[-1,1\right]</tex>. |
- | + | Коэффициент корреляции Пирсона называют также теснотой линейной связи: | |
+ | *<tex>\left| r_{xy} \right| =1 \;\Rightarrow\; x, y</tex> линейно зависимы, | ||
+ | *<tex>r_{xy}=0 \;\Rightarrow\; x, y</tex> линейно независимы. | ||
- | + | == Статистическая проверка наличия корреляции == | |
- | <tex> | + | '''Гипотеза:''' <tex>H_0</tex>: отсутствует линейная связь между выборками <tex>x</tex> и <tex>y</tex> (<tex>r_{xy} = 0</tex>). |
- | + | '''Статистика критерия: ''' | |
- | = | + | ::<tex> T = \frac{r_{xy}\sqrt{n-2}}{sqrt{1-r^2_{xy}}} \sim t_{n-2} </tex> – [[распределение Стьюдента]] с <tex>n-2</tex> степенями свободы. |
- | + | '''Критерий:''' | |
- | + | <tex>T \in [t_\alpha,t_{1-\alpha}]</tex>, где <tex>t_\alpha</tex> есть α-[[квантиль]] распределения Стьюдента. | |
- | + | ||
- | <tex> T | + | |
== Слабые стороны == | == Слабые стороны == | ||
+ | [[Image: Correlation.png|300px|thumb| Четыре различных набора данных, коэффициент корреляции на которых равен 0.81]] | ||
+ | * Неустойчивость к выбросам. | ||
- | * | + | * С помощью коэффициента корреляции Пирсона можно определить силу линейной зависимости между величинами, другие виды взаимосвязей выявляются методами [[Регрессионный анализ|регрессионного анализа]]. |
- | * | + | * Необходимо понимать различие понятий "независимость" и "некоррелированность". Из первого следует второе, но не наоборот. |
- | + | Для того, чтобы выяснить отношение между двумя переменными, часто необходимо избавиться от влияния третьей переменной. Рассмотрим пример 3-х переменных <tex>x, y, z.</tex> Исключим влияние переменной <tex>z</tex>: | |
- | :: <tex>r_{xy \setminus z}=\frac{r_{xy}-r_{xz}r_{yz}}{\sqrt{ \left(\ 1-r_{xz} \right)^2 \left(\ 1-r_{yz} \right)^2}} </tex> | + | :: <tex>r_{xy \setminus z}=\frac{r_{xy}-r_{xz}r_{yz}}{\sqrt{ \left(\ 1-r_{xz} \right)^2 \left(\ 1-r_{yz} \right)^2}} </tex> – [[Частная корреляция|частный коэффициент корреляции]]. |
Для исключения влияния большего числа переменных: | Для исключения влияния большего числа переменных: | ||
- | :: <tex>r_{ij \setminus vars}=\frac{-R_{ij}}{\sqrt{R_{ii}R_{jj}}} | + | :: <tex>r_{ij \setminus vars}=\frac{-R_{ij}}{\sqrt{R_{ii}R_{jj}}},</tex> |
- | <tex> R_{ij} = (-1)^{i+j}M_{ij} </tex> | + | :: <tex>R_{ij} = (-1)^{i+j}M_{ij},</tex> |
- | \begin{pmatrix} | + | |
- | 1 & r_{12} & \dots & r_{1k} \\ | + | где <tex>M_{ij} </tex> – главный минор матрицы коэффициентов корреляции переменных |
- | r_{21} & 1 & | + | |
- | \vdots & | + | ::<tex> R = \begin{pmatrix} 1 & r_{12} & \dots & r_{1k} \\r_{21} & 1 & & r_{2k}\\\vdots & & \ddots & \vdots \\r_{k1} & \dots & \dots & 1\end{pmatrix} .</tex> |
- | r_{k1} & \dots & \dots & 1 | + | |
- | \end{pmatrix} | + | |
- | </tex> | + | |
== Литература == | == Литература == | ||
== См. также == | == См. также == | ||
+ | * [[Частная корреляция]] | ||
* [[Коэффициент корреляции Спирмена]] | * [[Коэффициент корреляции Спирмена]] | ||
* [[Коэффициент корреляции Кенделла]] | * [[Коэффициент корреляции Кенделла]] | ||
== Ссылки == | == Ссылки == | ||
+ | * [http://en.wikipedia.org/wiki/Correlation Корреляция (en.wiki)] | ||
+ | |||
* [http://ru.wikipedia.org/wiki/%D0%9A%D0%BE%D1%80%D1%80%D0%B5%D0%BB%D1%8F%D1%86%D0%B8%D0%BE%D0%BD%D0%BD%D1%8B%D0%B9_%D0%B0%D0%BD%D0%B0%D0%BB%D0%B8%D0%B7 Корреляционный анализ] | * [http://ru.wikipedia.org/wiki/%D0%9A%D0%BE%D1%80%D1%80%D0%B5%D0%BB%D1%8F%D1%86%D0%B8%D0%BE%D0%BD%D0%BD%D1%8B%D0%B9_%D0%B0%D0%BD%D0%B0%D0%BB%D0%B8%D0%B7 Корреляционный анализ] | ||
Текущая версия
|
Определение
Коэффициент корреляции Пирсона характеризует существование линейной зависимости между двумя величинами.
Пусть даны две выборки коэффициент корреляции Пирсона рассчитывается по формуле:
где – выборочные средние и , – выборочные дисперсии, .
Коэффициент корреляции Пирсона называют также теснотой линейной связи:
- линейно зависимы,
- линейно независимы.
Статистическая проверка наличия корреляции
Гипотеза: : отсутствует линейная связь между выборками и ().
Статистика критерия:
- – распределение Стьюдента с степенями свободы.
Критерий:
, где есть α-квантиль распределения Стьюдента.
Слабые стороны
- Неустойчивость к выбросам.
- С помощью коэффициента корреляции Пирсона можно определить силу линейной зависимости между величинами, другие виды взаимосвязей выявляются методами регрессионного анализа.
- Необходимо понимать различие понятий "независимость" и "некоррелированность". Из первого следует второе, но не наоборот.
Для того, чтобы выяснить отношение между двумя переменными, часто необходимо избавиться от влияния третьей переменной. Рассмотрим пример 3-х переменных Исключим влияние переменной :
Для исключения влияния большего числа переменных:
где – главный минор матрицы коэффициентов корреляции переменных