Публикация:Вапник 1979 Восстановление зависимостей
Материал из MachineLearning.
м |
м |
||
Строка 40: | Строка 40: | ||
# {{Публикация:Вапник 74}} | # {{Публикация:Вапник 74}} | ||
- | [[Категория: Теория вычислительного обучения (публикации)]] | + | [[Категория: Теория вычислительного обучения (публикации)|Вапник]] |
</noinclude> | </noinclude> |
Версия 15:47, 19 мая 2008
Вапник В. Н. Восстановление зависимостей по эмпирическим данным. — М.: Наука, 1979. — 448 с.
BibTeX: |
@book{vapnik79vosstanovlenie, author = "Вапник В. Н.", title = "Восстановление зависимостей по эмпирическим данным", publisher = "М.: Наука", year = "1979", numpages = "448", language = russian } |
Аннотация
Основополагающая монография по статистической теории восстановления зависимостей. Рассматриваются задачи классификации, восстановления регрессии и интерпретации результатов косвенных экспериментов.
Вводятся понятия функции роста, энтропии и ёмкости системы событий. Доказывается, что ёмкость семейства линейных решающих правил равна числу свободных параметров.
Выводятся оценки скорости равномерной сходимости частоты ошибок к их вероятности, позволяющие обосновать метод минимизации эмпирического риска. Эти оценки нетривиальны только в том случае, когда ёмкость семейства алгоритмов много меньше длины обучающей выборки. В доказательствах используется комбинаторная техника, основанная на оценивании разности частот в двух подвыборках одинаковой длины.
Выводятся необходимые и достаточные условия равномерной сходимости частот появления событий к их вероятностям; доказывается, что частота сходится к вероятности равномерно по системе событий тогда и только тогда, когда доля энтропии, приходящейся на один элемент выборки, стремится к нулю с ростом длины выборки.
Предлагается метод упорядоченной минимизации суммарного риска, предназначенный для выбора модели алгоритмов оптимальной сложности. Новый метод, в отличие от ранее предложенного метода структурной минимизации риска, оценивает качество восстановления зависимости в конечном множестве точек, а не на всем пространстве, поэтому обладает более высокой точностью.
Описывается ряд алгоритмов распознавания образов, восстановления регрессии, селекции выборки.
Ссылки
- В. Н. Вапник — домашняя страница
- А. Я. Червоненкис — домашняя страница
- Выдающиеся ученые ИПУ РАН страница на сайте Института проблем управления РАН
Литература
- Вапник В. Н., Червоненкис А. Я. Теория распознавания образов. — М.: Наука, 1974. — 416 с. (подробнее)