Участник:Anton/Песочница

Материал из MachineLearning.

(Различия между версиями)
Перейти к: навигация, поиск
Строка 7: Строка 7:
=== Формулировка задания ===
=== Формулировка задания ===
-
[[Изображение:GraphicalModels2012_hw1_image1.png|300px|thumb|Система соседства марковской сети.]]
+
[[Изображение:GraphicalModels2012_hw1_image1.png|250px|thumb|Система соседства марковской сети.]]
Рассматривается марковская сеть из 6 переменных: <tex>x_0, x_1, x_2, x_3, x_4, x_5</tex>.
Рассматривается марковская сеть из 6 переменных: <tex>x_0, x_1, x_2, x_3, x_4, x_5</tex>.
Строка 15: Строка 15:
</tex>
</tex>
-
Множества значений переменных: <tex>x_0, x_1 \in \{0, 1 \}; \quad x_2, x_3, x_4, x_5 \in \{0, 1, 2 \}.</tex>
+
Множества значений переменных: <tex>x_0, x_1 \in \{0, 1 \}; \quad x_2, x_3, x_4, x_5 \in \{0, 1, 2 \}.</tex> Система соседства переменных задана на рисунке.
-
Рассматривается классическая скрытая марковская модель (СММ) первого порядка, в которой полное правдоподобие задается как:
+
Унарные потенциалы: <tex>\varphi_0(x_0) = -5x_0, \quad i = 0; \quad \varphi_i(x_i) = 0, \quad i > 0.</tex>
-
<center>
+
 
 +
Парные потенциалы: <tex> \varphi_{ij}(x_i, x_j) = -|i-j|(x_i - x_j)^2, \quad (i,j) \in \mathcal{E}. </tex>
 +
 
 +
Совместное распределение переменных задается следующим образом:<br>
<tex>
<tex>
-
p(X,T|\theta)=p(t_1)\prod_{n=2}^Np(t_n |t_{n-1})\prod_{n=1}^Np(x_n |t_n )
+
p(x_0, \dots, x_5) = \frac{1}{Z(T)} \exp\left( -\frac{1}{T} E(x_0, \dots, x_5) \right),
</tex>
</tex>
-
</center>
+
где параметр T — температура системы.
-
=== Оформление задания ===
+
Задание:
 +
#При помощи алгоритма передачи сообщений вычислить мин-маргиналы и найти '''все''' конфигурации, обладающие минимальной энергией.
 +
#При помощи алгоритма передачи сообщений вычислить нормировочную константу Z(T) и маргинальные распределения p(x_i) для всех i при температуре T = 1/ln(2).
 +
#Как будут меняться маргинальные распределения при изменении температуры? Ответ обосновать.
-
Выполненный вариант задания необходимо прислать письмом по адресу ''bayesml@gmail.com'' с темой «Задание 1. ФИО, номер группы». Убедительная просьба присылать выполненное задание '''только один раз''' с окончательным вариантом. Новые версии будут рассматриваться только в самом крайнем случае. Также убедительная просьба строго придерживаться заданной выше спецификации реализуемых функций. Очень трудно проверять большое количество заданий, если у каждого будет свой формат реализации.
 
-
Письмо должно содержать:
+
=== Оформление задания ===
-
*PDF-файл с описанием проведенных исследований
+
 
-
*LDS_GENERATE.m
+
Выполненный вариант задания необходимо сдать лектору в бумажном виде или прислать на ''bayesml@gmail.com'' в электронном виде.
-
*LDS_forwardbackward.m
+
Для решения задания можно использовать собственноручно написанные программные средства. Если таковые используются, то их тоже необходимо прислать.
-
*LDS_EM_TRAIN.m
+
-
*TRAJECTORY_GENERATE.m
+
-
*Ссылка на видео-файл, размещенный на файлообменнике или на видео-хостинге, с наложенными исходной и фильтрованной траекториями движения центра масс мыши. Лучше вставить видео-файл непосредственно внутрь PDF-файла с отчетом (это можно сделать, например, в программе Adobe Acrobat 9 и выше). Тогда нужно прислать ссылку на этот PDF-файл.
+
-
*Набор вспомогательных файлов при необходимости
+
[[Категория:Учебные курсы]]
[[Категория:Учебные курсы]]
[[Категория:Байесовские методы]]
[[Категория:Байесовские методы]]

Версия 13:58, 28 февраля 2012

Перейти к основной странице курса

Начало выполнения задания: 29 февраля 2012

Срок сдачи: 7 марта 2012, 18:00


Формулировка задания

Система соседства марковской сети.
Система соседства марковской сети.

Рассматривается марковская сеть из 6 переменных: x_0, x_1, x_2, x_3, x_4, x_5. Энергия системы задается следующим образом:

E(x_0, \dots, x_5) = \sum_{i = 1}^5 \varphi_i(x_i) + \sum_{(i, j) \in \mathcal{E}} \varphi_{ij}(x_i, x_j).

Множества значений переменных: x_0, x_1 \in \{0, 1 \}; \quad x_2, x_3, x_4, x_5 \in \{0, 1, 2 \}. Система соседства переменных задана на рисунке.

Унарные потенциалы: \varphi_0(x_0) = -5x_0, \quad i = 0; \quad \varphi_i(x_i) = 0, \quad i > 0.

Парные потенциалы:  \varphi_{ij}(x_i, x_j) = -|i-j|(x_i - x_j)^2, \quad (i,j) \in \mathcal{E}.

Совместное распределение переменных задается следующим образом:

p(x_0, \dots, x_5) = \frac{1}{Z(T)} \exp\left( -\frac{1}{T} E(x_0, \dots, x_5) \right),
где параметр T — температура системы.


Задание:

  1. При помощи алгоритма передачи сообщений вычислить мин-маргиналы и найти все конфигурации, обладающие минимальной энергией.
  2. При помощи алгоритма передачи сообщений вычислить нормировочную константу Z(T) и маргинальные распределения p(x_i) для всех i при температуре T = 1/ln(2).
  3. Как будут меняться маргинальные распределения при изменении температуры? Ответ обосновать.


Оформление задания

Выполненный вариант задания необходимо сдать лектору в бумажном виде или прислать на bayesml@gmail.com в электронном виде. Для решения задания можно использовать собственноручно написанные программные средства. Если таковые используются, то их тоже необходимо прислать.

Личные инструменты