Практикум на ЭВМ (317)/Autoencoder

Материал из MachineLearning.

(Различия между версиями)
Перейти к: навигация, поиск
(Мои результаты)
(Мои результаты)
Строка 19: Строка 19:
* MNIST, only 0, autoenc-st0b5e10: MSE=50.0 (averages everything) // 5 batches, 10 epochs
* MNIST, only 0, autoenc-st0b5e10: MSE=50.0 (averages everything) // 5 batches, 10 epochs
* MNIST, only 0, autoenc-stNorm(0,0.3)b5e1000: MSE=12.6 (continues optimizing)
* MNIST, only 0, autoenc-stNorm(0,0.3)b5e1000: MSE=12.6 (continues optimizing)
 +
* MNIST, only 0, autoenc-stNorm(0,0.3)Tie-b5e400: MSE=16.0 // seems no difference from the previous case

Версия 11:57, 11 февраля 2013

Это черновик задания. Не сто́ит приступать к его выполнению до официального релиза.


Данные

MNIST:

Мои результаты

  • MNIST, only 0, PCA-30: MSE=9.0
  • MNIST, only 01, PCA-30: MSE=7.3
  • MNIST, all-dig, PCA-30: MSE=14.2
  • MNIST, only 0, PCA-18: MSE=13.0
  • MNIST, only 1, PCA-18: MSE=3.7
  • MNIST, only 01, PCA-18: MSE=10.6
  • MNIST, all-dig, PCA-18: MSE=20.0
  • MNIST, only 0, autoenc-st0b5e10: MSE=50.0 (averages everything) // 5 batches, 10 epochs
  • MNIST, only 0, autoenc-stNorm(0,0.3)b5e1000: MSE=12.6 (continues optimizing)
  • MNIST, only 0, autoenc-stNorm(0,0.3)Tie-b5e400: MSE=16.0 // seems no difference from the previous case
Личные инструменты