Метод главных компонент
Материал из MachineLearning.
(→Литература) |
(→Внешние ссылки) |
||
Строка 59: | Строка 59: | ||
== Внешние ссылки == | == Внешние ссылки == | ||
* [http://pca.narod.ru/ Нелинейный метод главных компонент] | * [http://pca.narod.ru/ Нелинейный метод главных компонент] | ||
+ | * [http://en.wikipedia.org/wiki/Principal_components_analysis Principal components analysis at wikipedia.org] | ||
+ | * [http://ru.wikipedia.org/wiki/%D0%9C%D0%B5%D1%82%D0%BE%D0%B4_%D0%B3%D0%BB%D0%B0%D0%B2%D0%BD%D1%8B%D1%85_%D0%BA%D0%BE%D0%BC%D0%BF%D0%BE%D0%BD%D0%B5%D0%BD%D1%82 Метод главных компонент на wikipedia.org] | ||
{{Заготовка}} | {{Заготовка}} |
Версия 08:01, 30 июня 2008
Метод главных компонент способ снижения размерности пространства данных. Он заключается в нахождении линейного ортогонального преобразования исходной матрицы данных в пространство меньшей размерности. При этом выбираются такая ортогональная система координат, которая обеспечивает наименьшую потерю информации в исходных данных. Последнее подразуменает минимальную среднеквадратичную ошибку при проекции данных в пространство заданной размерности.
Содержание |
Определение метода главных компонент
Одной из задач аппроксимации является задача приближения множества векторов-строк матрицы их проекциями на некоторую новую ортогональную систему координат. Эта система отыскивается на множестве преобразований вращений начальной системы координат. При этом множество аппроксимируемых векторов , , отображается в новое множество векторов , где . Оператором отображения
является ортонормальная матрица , то есть единичная матрица. Столбцы называются главными компонентами матрицы . Матрица строится таким образом, что среднеквадратическая разность между векторами и проекцией этих векторов на ортогональную систему координат, заданных минимальна. Наиболее удобным способом получения матрицы является сингулярное разложение матрицы :
Метод главных компонент позволяет с помощью первых главных компонент можно восстановить исходную матрицу с минимальной ошибкой. Критерий минимального значения суммы квадратов расстояния от векторов-столбцов матрицы данных до их проекций на первую главную компоненту называется критерием наибольшей информативности C.Р. Рао. Кроме того, матрица выполняет декоррелирующее преобразование, называемое также преобразованием Карунена-Лоэва. В результате этого преобразования исчезает возможная корреляция между векторами-столбцами исходной матрицы .
Рао было показано, что строки матрицы есть собственные векторы ковариационной матрицыгде матрица центрирована из каждого ее столбца вычтено среднее значение по этому столбцу.
Понятие наибольшей информативности
Рассмотрим -мерную случайную величину с ковариационной матрицей . Обозначим соответствующие собственные числа и собственные векторы матрицы . Заметим, что собственные числа и элементы собственных векторов матрицы всегда действительны. Тогда по теореме о собственных числах
Случайная величина называется -й главной компонентой случайной величины . Матрица вращения составлена из векторов-столбцов . Матрица главных компонент имеет следующие свойства.
Смотри также
Литература
- Рао С.Р. Линейные статистические методы и их применения. М.: Наука. 1968. С. 530-533.
- Айвазян С.А., Бухштабер В.М., Енюков И.С., Мешалкин Л.Д. Прикладная статистика. Классификация и снижение размерности. М.: Финансы и статистика. 1989.
- Jolliffe I.T. Principal Component Analysis, Springer Series in Statistics. Springer. 2002.
- Pearson, K. (1901). "On Lines and Planes of Closest Fit to Systems of Points in Space". Philosophical Magazine 2 (6): 559–572. [1]