Следящий контрольный сигнал
Материал из MachineLearning.
м |
м («Скользящий контрольный сигнал» переименована в «Следящий контрольный сигнал»: ошибочный термин) |
Версия 20:52, 5 мая 2013
|
При использовании модели прогнозирования временного ряда встаёт проблема адекватности этой модели. Пусть , где — данные, которые уже известны, — прогноз на момент t, полученный с помощью некоторой адаптивной модели. Если ошибка невелика, т.е. разница между реальными данными и прогнозом мала, то использование данной модели оправдано.
Определение
— скользящий контрольный сигнал.
Рекуррентная формула вычисления ошибок:
;
;
где , рекомендуется брать
Гипотеза адекватности модели
Гипотеза: : модель адекватна.
При — дисперсия шума. .
Статистика: Скользящий контрольный сигнал — .
Критерий: Если , где — α-квантиль нормального распределения, то гипотеза верна.
Литература
Лукашин Ю. П. Адаптивные методы краткосрочного прогнозирования временных рядов. — М.: Финансы и статистика, 2003.
Ссылки
Модель Брауна — экспоненциальное сглаживание.
Модель Хольта — учитываются линейный тренд без сезонности.
Модель Хольта-Уинтерса — учитываются мультипликативный тренд и сезонность.
Модель Тейла-Вейджа — учитываются аддитивный тренд и сезонность.
Модель Тригга-Лича — скользящий контрольный сигнал используется для адаптации параметров адаптации.