Следящий контрольный сигнал

Материал из MachineLearning.

(Различия между версиями)
Перейти к: навигация, поиск
(Гипотеза адекватности модели)
 
(7 промежуточных версий не показаны.)
Строка 2: Строка 2:
При использовании модели прогнозирования временного ряда встаёт проблема адекватности этой модели.
При использовании модели прогнозирования временного ряда встаёт проблема адекватности этой модели.
-
Пусть <tex>\eps_t=y_t-\hat{y}_t</tex>, где <tex>y_t</tex> - данные, которые уже известны, <tex>\hat{y}_t</tex>- прогноз на момент t, полученный с помощью некоторой адаптивной модели.
+
Пусть <tex>\eps_t=y_t-\hat{y}_t</tex>, где <tex>y_t</tex> данные, которые уже известны, <tex>\hat{y}_t</tex> прогноз на момент t, полученный с помощью некоторой адаптивной модели.
Если ошибка <tex>\eps_t</tex> невелика, т.е. разница между реальными данными и прогнозом мала, то использование данной модели оправдано.
Если ошибка <tex>\eps_t</tex> невелика, т.е. разница между реальными данными и прогнозом мала, то использование данной модели оправдано.
== Определение ==
== Определение ==
-
<tex>K_t = \frac{\hat{\eps}_t}{\tilde{\eps}_t}</tex> - скользящий контрольный сигнал.
+
<tex>K_t = \frac{\hat{\eps}_t}{\tilde{\eps}_t}</tex> — следящий контрольный сигнал.
Рекуррентная формула вычисления ошибок:
Рекуррентная формула вычисления ошибок:
Строка 20: Строка 20:
<tex>\left( E \eps_t = 0,\; E \eps_t \eps_{t+d} = 0, \; d \geq 1 \right)</tex>
<tex>\left( E \eps_t = 0,\; E \eps_t \eps_{t+d} = 0, \; d \geq 1 \right)</tex>
-
При <tex>\gamma \leq 0.1, \; t \rightarrow \infty, \; \hat{\eps}_t \sim N(0,\sigma^2 \frac{\gamma}{2-\gamma}), \; \sigma^2 = E\eps^2_t</tex> - дисперсия шума. <tex> \hat{\eps}_t \approx \sigma/1.2</tex>.
+
При <tex>\gamma \leq 0.1, \; t \rightarrow \infty, \; \hat{\eps}_t \sim N(0,\sigma^2 \frac{\gamma}{2-\gamma}), \; \sigma^2 = E\eps^2_t</tex> дисперсия шума. <tex> \hat{\eps}_t \approx \sigma/1.2</tex>.
-
'''Статистика:''' Скользящий контрольный сигнал - <tex>K_t</tex> .
+
'''Статистика:''' Следящий контрольный сигнал <tex>K_t</tex> .
[[Изображение:NormalDistribCrop.png|220px|thumb|Нормальное распределение. Серым обозначена область ограниченная [[Доверительный интервал| доверительным интервалом]].]]
[[Изображение:NormalDistribCrop.png|220px|thumb|Нормальное распределение. Серым обозначена область ограниченная [[Доверительный интервал| доверительным интервалом]].]]
-
'''Критерий:''' Если <tex>K_t \in \left[-1.2 \Phi_{\frac{\alpha}{2}} \sqrt{\frac{\gamma}{2-\gamma}}, \; 1.2 \Phi_{1-\frac{\alpha}{2}} \sqrt{\frac{\gamma}{2-\gamma} \right]</tex>, где <tex>\Phi_{\alpha}</tex> - α-[[Квантиль|квантиль]] нормального распределения, то гипотеза <tex>H_0</tex> верна.
+
'''Критерий:''' Если <tex>K_t \in \left[-1.2 \Phi_{\frac{\alpha}{2}} \sqrt{\frac{\gamma}{2-\gamma}}, \; 1.2 \Phi_{1-\frac{\alpha}{2}} \sqrt{\frac{\gamma}{2-\gamma} \right]</tex>, где <tex>\Phi_{\alpha}</tex> α-[[Квантиль|квантиль]] нормального распределения, то гипотеза <tex>H_0</tex> верна.
== Литература==
== Литература==
''Лукашин Ю. П.'' Адаптивные методы краткосрочного прогнозирования временных рядов. — М.: Финансы и статистика, 2003.
''Лукашин Ю. П.'' Адаптивные методы краткосрочного прогнозирования временных рядов. — М.: Финансы и статистика, 2003.
== Ссылки ==
== Ссылки ==
-
[[Экспоненциальное_сглаживание|Модель Брауна]] - экспоненциальное сглаживание.
+
[[Экспоненциальное_сглаживание|Модель Брауна]] экспоненциальное сглаживание.
[[Модель Хольта]] — учитываются линейный тренд без сезонности.
[[Модель Хольта]] — учитываются линейный тренд без сезонности.
Строка 39: Строка 39:
[[Модель Тейла-Вейджа]] — учитываются аддитивный тренд и сезонность.
[[Модель Тейла-Вейджа]] — учитываются аддитивный тренд и сезонность.
 +
[[Модель Тригга-Лича]] — следящий контрольный сигнал используется для адаптации параметров адаптации.
 +
 +
[[Категория:Прогнозирование временных рядов]]
[[Категория:Прикладная статистика]]
[[Категория:Прикладная статистика]]
[[Категория:Энциклопедия анализа данных]]
[[Категория:Энциклопедия анализа данных]]

Текущая версия

Содержание

При использовании модели прогнозирования временного ряда встаёт проблема адекватности этой модели. Пусть \eps_t=y_t-\hat{y}_t, где y_t — данные, которые уже известны, \hat{y}_t — прогноз на момент t, полученный с помощью некоторой адаптивной модели. Если ошибка \eps_t невелика, т.е. разница между реальными данными и прогнозом мала, то использование данной модели оправдано.

Определение

K_t = \frac{\hat{\eps}_t}{\tilde{\eps}_t} — следящий контрольный сигнал.

Рекуррентная формула вычисления ошибок:

\hat{\eps}_t = \gamma \eps_t + (1-\gamma) \hat{\eps}_{t-1};

\tilde{\eps}_t = \gamma |\eps_t| + (1-\gamma) \tilde{\eps}_{t-1};

где \gamma \in (0,1), рекомендуется брать \gamma \in[0.05,0.1].

Гипотеза адекватности модели

Гипотеза: H_0: модель адекватна.

\left( E \eps_t = 0,\; E \eps_t \eps_{t+d} = 0, \; d \geq 1 \right)

При \gamma \leq 0.1, \; t \rightarrow \infty, \; \hat{\eps}_t \sim N(0,\sigma^2 \frac{\gamma}{2-\gamma}), \; \sigma^2 = E\eps^2_t — дисперсия шума.  \hat{\eps}_t \approx \sigma/1.2.

Статистика: Следящий контрольный сигнал — K_t .

Нормальное распределение. Серым обозначена область ограниченная  доверительным интервалом.
Нормальное распределение. Серым обозначена область ограниченная доверительным интервалом.

Критерий: Если K_t \in \left[-1.2 \Phi_{\frac{\alpha}{2}} \sqrt{\frac{\gamma}{2-\gamma}}, \; 1.2 \Phi_{1-\frac{\alpha}{2}} \sqrt{\frac{\gamma}{2-\gamma} \right], где \Phi_{\alpha} — α-квантиль нормального распределения, то гипотеза H_0 верна.

Литература

Лукашин Ю. П. Адаптивные методы краткосрочного прогнозирования временных рядов. — М.: Финансы и статистика, 2003.

Ссылки

Модель Брауна — экспоненциальное сглаживание.

Модель Хольта — учитываются линейный тренд без сезонности.

Модель Хольта-Уинтерса — учитываются мультипликативный тренд и сезонность.

Модель Тейла-Вейджа — учитываются аддитивный тренд и сезонность.

Модель Тригга-Лича — следящий контрольный сигнал используется для адаптации параметров адаптации.

Личные инструменты