Критерий Андерсона-Дарлинга

Материал из MachineLearning.

(Различия между версиями)
Перейти к: навигация, поиск
Текущая версия (14:53, 25 октября 2013) (править) (отменить)
 
(1 промежуточная версия не показана)
Строка 1: Строка 1:
 +
{{UnderConstruction|Уважаемый автор! Если дата завершения работ неизвестна, прошу рассмотреть возможность редактировать эту страницу в личном пространстве участника. Например: "Участник:Headrd/Название статьи". --[[Участник:Strijov|Strijov]] 18:53, 25 октября 2013 (MSD)}}
 +
Классический непараметрический критерий согласия Андерсона-Дарлинга предназначен для проверки простых гипотез о принадлежности выборки некоторому закону распределения с известными параметрами. В этом случае распределение статистики критерия не зависит от закона, с которым проверяется согласие: критерий обладает свойством "свободы от распределения".
Классический непараметрический критерий согласия Андерсона-Дарлинга предназначен для проверки простых гипотез о принадлежности выборки некоторому закону распределения с известными параметрами. В этом случае распределение статистики критерия не зависит от закона, с которым проверяется согласие: критерий обладает свойством "свободы от распределения".
Строка 11: Строка 13:
== Ссылки ==
== Ссылки ==
 +
* [http://ru.wikipedia.org/wiki/Критерий_Андерсона-Дарлинга Критерий Андерсона-Дарлинга в ''Википедии'']
 +
О применении критерия Андерсона-Дарлинга для проверки различных сложных гипотез см. на сайте Новосибирского государственного технического университета:
О применении критерия Андерсона-Дарлинга для проверки различных сложных гипотез см. на сайте Новосибирского государственного технического университета:
Строка 16: Строка 20:
* [http://ami.nstu.ru/~headrd/seminar/publik_html/Models_Part_I.pdf Модели распределений статистик непараметрических критериев согласия при проверке сложных гипотез с использованием оценок максимального правдоподобия. Ч.I // Измерительная техника. 2009. № 6. – С.3-11.]
* [http://ami.nstu.ru/~headrd/seminar/publik_html/Models_Part_I.pdf Модели распределений статистик непараметрических критериев согласия при проверке сложных гипотез с использованием оценок максимального правдоподобия. Ч.I // Измерительная техника. 2009. № 6. – С.3-11.]
* [http://ami.nstu.ru/~headrd/seminar/publik_html/Models_Part_II.pdf Модели распределений статистик непараметрических критериев согласия при проверке сложных гипотез с использованием оценок максимального правдоподобия. Ч.II // Измерительная техника. 2009. № 8. – С.17-26.]
* [http://ami.nstu.ru/~headrd/seminar/publik_html/Models_Part_II.pdf Модели распределений статистик непараметрических критериев согласия при проверке сложных гипотез с использованием оценок максимального правдоподобия. Ч.II // Измерительная техника. 2009. № 8. – С.17-26.]
 +
 +
[[Категория:Прикладная статистика]]

Текущая версия

Статья в настоящий момент дорабатывается.
Уважаемый автор! Если дата завершения работ неизвестна, прошу рассмотреть возможность редактировать эту страницу в личном пространстве участника. Например: "Участник:Headrd/Название статьи". --Strijov 18:53, 25 октября 2013 (MSD)


Классический непараметрический критерий согласия Андерсона-Дарлинга предназначен для проверки простых гипотез о принадлежности выборки некоторому закону распределения с известными параметрами. В этом случае распределение статистики критерия не зависит от закона, с которым проверяется согласие: критерий обладает свойством "свободы от распределения".

При проверке сложных гипотез, когда по этой же выборке оцениваются параметры закона, с которым проверяется согласие, "свобода от распределения" теряется. При проверке сложных гипотез распределения статистик критерия зависят от ряда факторов: от вида наблюдаемого закона, соответствующего справедливой проверяемой гипотезе; от типа оцениваемого параметра и числа оцениваемых параметров; в некоторых случаях от конкретного значения параметра (например, в случае семейств гамма- и бета-распределений); от метода оценивания параметров. Различия в предельных распределениях той же самой статистики при проверке простых и сложных гипотез настолько существенны, что пренебрегать этим ни в коем случае нельзя.

Литература

  1. Anderson T.W., and Darling D.A. Asymptotic theory of certain “goodness of fit” criteria based on stochastic processes // Ann. Math. Statist., 1952. V.23. – P.193-212.
  2. Anderson T.W., and Darling D.A. A test of goodness of fit // J. Amer. Stist. Assoc., 1954. V.29. – P.765-769.
  3. Большев Л.Н., Смирнов Н.В. Таблицы математической статистики. – М.: Наука, 1983. – 416 с.
  4. Р 50.1.033–2001. Рекомендации по стандартизации. Прикладная статистика. Правила проверки согласия опытного распределения с теоретическим. Часть I. Критерии типа хи-квадрат. – М.: Изд-во стандартов. 2002. – 87 с.

Ссылки

О применении критерия Андерсона-Дарлинга для проверки различных сложных гипотез см. на сайте Новосибирского государственного технического университета:

Личные инструменты