Участник:Medvmasha
Материал из MachineLearning.
(→Отчеты о научно-исследовательской работе) |
|||
Строка 125: | Строка 125: | ||
|url = http://strijov.com/papers/Medvednikova2012CoIndicator.pdf | |url = http://strijov.com/papers/Medvednikova2012CoIndicator.pdf | ||
}} | }} | ||
+ | |||
+ | |||
+ | ===Осень 2013, 9-й семестр=== | ||
+ | |||
+ | '''Гранты''' | ||
+ | |||
+ | ''Развитие теории краткосрочного прогнозирования многомерных временных рядов'' совместно с МЦНМО, № 14-07-31046, подано | ||
+ | |||
+ | ''Методы анализа взаимного влияния пассажирского и грузового трафиков РЖД'', МФТИ, № 13-07-13139 | ||
+ | |||
+ | ''Instance ranking using partially ordered sets of expert estimations'', ПГАС |
Версия 14:51, 25 декабря 2013
МФТИ, ФУПМ
Кафедра "Интеллектуальные системы"
Направление "Интеллектуальный анализ данных"
Mailto: medvmasha@rambler.ru
Отчеты о научно-исследовательской работе
Весна 2012, 6-й семестр
Использование метода главных компонент при построении интегральных индикаторов
В работе рассматривается использование метода главных компонент при построении интегральных индикаторов. Полученные результаты сравниваются с результатами, даваемыми методом расслоения Парето. Строится интегральный индикатор для российских вузов. Для этого используются биографии 30 богатейших бизнесменов России по версии журнала «Forbes» за 2011 год.
Публикация
- Медведникова М.М. Использование метода главных компонент при построении интегральных индикаторов // Машинное обучение и анализ данных. — 2012. — № 3. — С. 292-304. — ISSN 2223-3792.
Осень 2012, 7-й семестр
Алгоритм многоклассовой классификации объектов, описанных в ранговых шкалах
Предложен метод построения рангового интегрального индикатора на основе ранговой матрицы описаний, заданной экспертами. Предложен трехшаговый итеративный алгоритм оценки параметров и весов признаков. Рассмотрена задача выбора наиболее информативных признаков. Работа проиллюстрирована задачей определения статуса редких видов, включенных в Красную книгу РФ.
Публикация
- М. П. Кузнецов, В. В. Стрижов, М. М. Медведникова Алгоритм многоклассовой классификации объектов, описанных в ранговых шкалах // НТВСПбГУ. — 2012. — № 5. — С. 92-94. — ISSN 1994-2354.
Алгоритм многоклассовой монотонной Парето-классификации с выбором признаков
Предложен метод нахождения монотонной функции, определенной на декартовом произведении множеств, на которых заданы отношения линейного порядка. В основе метода лежат процедуры монотонизации функции дискретного аргумента и нахождения Парето-оптимального фронта. Рассмотрена задача выбора наиболее информативных признаков. Работа проиллюстрирована задачей прогнозирования статуса редких видов, включенных в Красную книгу РФ.
Публикация
- М. М. Медведникова, В. В. Стрижов, М. П. Кузнецов Алгоритм многоклассовой монотонной Парето-классификации с выбором признаков // Известия ТулГУ. — 2012. — № 3. — С. 132-141. — ISSN 2071-6141.
Построение интегрального индикатора качества научных публикаций методами ко-кластеризации
Предлагается способ измерения качества научных публикаций автора, связанный с качеством журнала, в котором автор печатает свою работу. Рассматриваемый совместный интегральный индикатор вычисляется по спискам публикаций за последние годы, находящимся в открытом доступе, с использованием алгоритма коллаборативной фильтрации. В качестве функционала качества используется функция близости интегральных индикаторов авторов и журналов, в которых они публикуют свои работы. Также оценивается интегрированность авторов и изданий в мировую науку.
Публикация
- М. М. Медведникова, В. В. Стрижов Построение интегрального индикатора качества научных публикаций методами ко-кластеризации // Известия ТулГУ. — 2013. — № 1. — ISSN 2071-6141.
Гранты
Использование метода главных компонент при построении интегральных индикаторов, ПГАС
Весна 2013, 8-й семестр
Непараметрическое прогнозирование загруженности системы железнодорожных узлов по историческим данным
Предложен алгоритм непараметрического прогнозирования загруженности железнодорожных узлов РЖД по историческим данным. Алгоритм основан на свертке эмпирической плотности распределения значений временного ряда с функцией потерь. В работе исследуются свойства авторегрессионной прогностической модели. Алгоритм проиллюстрирован данными загруженности железнодорожных узлов Омской области за 2007 и 2008 годы.
Публикация
- Вальков А.С., Кожанов Е.М., Медведникова М.М., Хусаинов Ф.И. Непараметрическое прогнозирование загруженности системы железнодорожных узлов по историческим данным // Машинное обучение и анализ данных. — 2012. — № 4. — ISSN 2071-6141.
Instance ranking using partially ordered sets of expert estimations
We solve an instance ranking problem using ordinal scaled expert estimations. The experts define a preference binary relation on the set of features. The instance ranking problem is considered as the monotone multiclass classification problem. To solve the problem we use a set of Pareto optimal fronts. The proposed method is illustrated with the problem of categorization of the IUCN Red List threatened species.'
Публикации
- Medvednikova M. M., Kuznetsov M.P., Strijov V. V. Instance ranking using partially ordered sets of expert estimations // Journal of Machine Learning Research. — 2013 (submitted).
- Medvednikova M., Strijov V. Construction of rank-scaled quality integral indicator for scientific publications in using co-clustering // Notices of Tula State University. — 2013. — № 1. — С. 154-165.
Осень 2013, 9-й семестр
Гранты
Развитие теории краткосрочного прогнозирования многомерных временных рядов совместно с МЦНМО, № 14-07-31046, подано
Методы анализа взаимного влияния пассажирского и грузового трафиков РЖД, МФТИ, № 13-07-13139
Instance ranking using partially ordered sets of expert estimations, ПГАС
Категории: Медведникова М.М. (публикации) | 2012 (публикации) | Машинное обучение и анализ данных (статьи) | М. П. Кузнецов, В. В. Стрижов, М. М. Медведникова (публикации) | НТВСПбГУ (статьи) | М. М. Медведникова, В. В. Стрижов, М. П. Кузнецов (публикации) | Известия ТулГУ (статьи) | М. М. Медведникова, В. В. Стрижов (публикации) | 2013 (публикации) | Вальков А.С., Кожанов Е.М., Медведникова М.М., Хусаинов Ф.И. (публикации) | Medvednikova M. M., Kuznetsov M.P., Strijov V. V. (публикации) | 2013 (submitted) (публикации) | Journal of Machine Learning Research (статьи) | Medvednikova M., Strijov V. (публикации) | Notices of Tula State University (статьи)