Критерий Бройша-Пагана

Материал из MachineLearning.

(Различия между версиями)
Перейти к: навигация, поиск
м (литература, ссылки)
м (ссылки, дополнение)
Строка 1: Строка 1:
 +
==Определение==
 +
'''Критерий Бройша-Пагана''' (также ''Бреуша-Пагана'', англ. ''Breusch-Pagan test'') - один из статистических тестов для проверки наличия гетероскедастичности (то есть непостоянной дисперсии) случайных ошибок модели линейной регрессии. Применяется, если есть основания полагать, что дисперсия случайных ошибок может зависеть от некоторой совокупности переменных. В данном случае проверяется линейная зависимость дисперсии случайных ошибок <tex> \sigma_t </tex> от наблюдаемых переменных:
'''Критерий Бройша-Пагана''' (также ''Бреуша-Пагана'', англ. ''Breusch-Pagan test'') - один из статистических тестов для проверки наличия гетероскедастичности (то есть непостоянной дисперсии) случайных ошибок модели линейной регрессии. Применяется, если есть основания полагать, что дисперсия случайных ошибок может зависеть от некоторой совокупности переменных. В данном случае проверяется линейная зависимость дисперсии случайных ошибок <tex> \sigma_t </tex> от наблюдаемых переменных:
::<tex>\sigma_t^2 = z_t^T \gamma, \quad t = 1,\dots,n</tex>, где <tex>z_t = (1,z_{2t},\dots,z_{pt})^T</tex>.
::<tex>\sigma_t^2 = z_t^T \gamma, \quad t = 1,\dots,n</tex>, где <tex>z_t = (1,z_{2t},\dots,z_{pt})^T</tex>.
-
<tex>H_0</tex>: <tex>\sigma_1^2 = \dots = \sigma_n^2 \quad \Leftrightarrow \quad \gamma_2 = \dots = \gamma_p = 0</tex>
+
Формулировки проверяемой и альтернативной гипотез выглядят следующим образом:
-
<tex>H_1</tex>: <tex>H_0</tex> неверна
+
::<tex>H_0: \quad \gamma_2 = \ldots = \gamma_p = 0 \quad \Leftrightarrow \quad \sigma_1^2 = \ldots = \sigma_n^2 \quad \Leftrightarrow </tex> остатки гомоскедастичны;
 +
 
 +
::<tex>H_1: \quad H_0</tex> неверна.
 +
 
 +
==Процедура теста==
Следуя методу множителей Лагранжа, получаем следующий вид статистики теста:
Следуя методу множителей Лагранжа, получаем следующий вид статистики теста:
-
:<tex>LM=\left (\frac{\partial l}{\partial\theta} \right )'\left (-E\left [\frac{\partial^2 l}{\partial\theta \partial\theta'} \right ] \right )^{-1}\left(\frac{\partial l}{\partial\theta} \right )</tex>
+
:<tex>LM=\left (\frac{\partial l}{\partial\theta} \right )'\left (-E\left [\frac{\partial^2 l}{\partial\theta \partial\theta'} \right ] \right )^{-1}\left(\frac{\partial l}{\partial\theta} \right )</tex>.
-
Процедура теста Бройша-Пагана состоит из следующих шагов:
 
-
* ''Шаг 1'': Исходная модель <tex> y = X\beta+\varepsilon</tex> оценивается обычным МНК, вычисляются остатки <tex>\varepsilon_t</tex>.
+
В учебнике [C. Heij, P. de Boer, 2004] говорится о том что подсчет статистики сводится к следующей процедуре:
 +
 
 +
* ''Шаг 1'': Исходная модель <tex> y = X\beta+\varepsilon</tex> оценивается обычным МНК, вычисляются остатки <tex>\varepsilon_t</tex>;
* ''Шаг 2'': Вычисление оценки дисперсии остатков (в предположении их гомоскедастичности):
* ''Шаг 2'': Вычисление оценки дисперсии остатков (в предположении их гомоскедастичности):
-
:<tex>\hat{\sigma}^2 = \frac{1}{n} RSS</tex>
+
:<tex>\hat{\sigma}^2 = \frac{1}{n} RSS</tex>;
-
* ''Шаг 3'': Вычисление стандартизированных остатков <tex>\frac{\varepsilon^2}{\hat{\sigma}^2} </tex>
+
* ''Шаг 3'': Вычисление стандартизированных остатков <tex>\frac{\varepsilon^2}{\hat{\sigma}^2} </tex>;
* ''Шаг 4'': Построение дополнительной регрессии квадратов стандартизированных ошибок на исходные наблюдаемые переменные
* ''Шаг 4'': Построение дополнительной регрессии квадратов стандартизированных ошибок на исходные наблюдаемые переменные
-
:<tex> \varepsilon_t^2=\gamma_1+\gamma_2z_{2t}+\dots+\gamma_pz_{pt}+\eta_t. </tex>
+
:<tex> \varepsilon_t^2=\gamma_1+\gamma_2z_{2t}+\dots+\gamma_pz_{pt}+\eta_t </tex>;
-
* ''Шаг 5'': Статистика теста определяется как умноженный на число наблюдений коэффициент детерминации построенной на предыдущем шаге регрессии:
+
* ''Шаг 5'': <tex> LM=n R^{2}</tex>, где <tex>R^{2}</tex> - коэффициент детерминации построенной на предыдущем шаге регрессии.
-
:<tex> LM=nR^{2}\, . </tex>
+
 
 +
 
 +
В работе [Breush, Pagan, 1979] установлено, что при справедливости нулевой гипотезы о гомоскедастичности остатков статистика теста имеет распределение хи-квадрат с p-1 степенями свободы <tex> LM \sim \chi^2 \left (p - 1 \right )</tex>.
-
В работе [Breush, Pagan, 1979] установлено, что при справедливости нулевой гипотезы о гомоскедастичности остатков <tex> LM \sim \chi^2 \left (p - 1 \right )</tex>.
+
==Реализации==
 +
* MatLab: встроенной реализации нет, есть [http://www.mathworks.com/matlabcentral/fileexchange/24722-heteroskedasticity-test реализации на File Exchange].
 +
* R: функция [http://finzi.psych.upenn.edu/R/library/lmtest/html/bptest.html <code>bptest</code>] в стандартном пакете <code>lmtest</code> и [http://finzi.psych.upenn.edu/R/library/car/html/ncvTest.html <code>ncvtest</code>] в пакете <code>car</code>.
== Ссылки ==
== Ссылки ==
-
* Breusch, T.S.; Pagan, A.R. (1979). [https://www.aae.wisc.edu/aae637/handouts/breusch_pagan_hetero_test_article.pdf "Simple test for heteroscedasticity and random coefficient variation"].
+
* Breusch T.S., Pagan A.R. (1979). [https://www.aae.wisc.edu/aae637/handouts/breusch_pagan_hetero_test_article.pdf "Simple test for heteroscedasticity and random coefficient variation"].
* [http://en.wikipedia.org/wiki/Breusch%E2%80%93Pagan_test EnWiki: Breusch–Pagan test]
* [http://en.wikipedia.org/wiki/Breusch%E2%80%93Pagan_test EnWiki: Breusch–Pagan test]
* C. Heij, P. de Boer (2004). [https://akela.mendelu.cz/~xhavir3/ekm/Heij.pdf "Econometric Methods with Applications in Business and Economics"]. Oxford University Press, pp. 344–345.
* C. Heij, P. de Boer (2004). [https://akela.mendelu.cz/~xhavir3/ekm/Heij.pdf "Econometric Methods with Applications in Business and Economics"]. Oxford University Press, pp. 344–345.
* Магнус Я.Р., Катышев П.К., Пересецкий А.А. (2007) [http://math.isu.ru/ru/chairs/me/files/books/magnus.pdf "Эконометрика. Начальный курс"]. М.:Дело, стр. 179-183.
* Магнус Я.Р., Катышев П.К., Пересецкий А.А. (2007) [http://math.isu.ru/ru/chairs/me/files/books/magnus.pdf "Эконометрика. Начальный курс"]. М.:Дело, стр. 179-183.

Версия 12:55, 27 декабря 2013

Содержание

Определение

Критерий Бройша-Пагана (также Бреуша-Пагана, англ. Breusch-Pagan test) - один из статистических тестов для проверки наличия гетероскедастичности (то есть непостоянной дисперсии) случайных ошибок модели линейной регрессии. Применяется, если есть основания полагать, что дисперсия случайных ошибок может зависеть от некоторой совокупности переменных. В данном случае проверяется линейная зависимость дисперсии случайных ошибок  \sigma_t от наблюдаемых переменных:

\sigma_t^2 = z_t^T \gamma, \quad t = 1,\dots,n, где z_t = (1,z_{2t},\dots,z_{pt})^T.

Формулировки проверяемой и альтернативной гипотез выглядят следующим образом:

H_0: \quad \gamma_2 = \ldots = \gamma_p = 0 \quad \Leftrightarrow \quad \sigma_1^2 = \ldots = \sigma_n^2 \quad \Leftrightarrow  остатки гомоскедастичны;
H_1: \quad H_0 неверна.

Процедура теста

Следуя методу множителей Лагранжа, получаем следующий вид статистики теста:

LM=\left (\frac{\partial l}{\partial\theta} \right )'\left (-E\left [\frac{\partial^2 l}{\partial\theta \partial\theta'} \right ] \right )^{-1}\left(\frac{\partial l}{\partial\theta} \right ).


В учебнике [C. Heij, P. de Boer, 2004] говорится о том что подсчет статистики сводится к следующей процедуре:

  • Шаг 1: Исходная модель  y = X\beta+\varepsilon оценивается обычным МНК, вычисляются остатки \varepsilon_t;
  • Шаг 2: Вычисление оценки дисперсии остатков (в предположении их гомоскедастичности):
\hat{\sigma}^2 = \frac{1}{n} RSS;
  • Шаг 3: Вычисление стандартизированных остатков \frac{\varepsilon^2}{\hat{\sigma}^2} ;
  • Шаг 4: Построение дополнительной регрессии квадратов стандартизированных ошибок на исходные наблюдаемые переменные
 \varepsilon_t^2=\gamma_1+\gamma_2z_{2t}+\dots+\gamma_pz_{pt}+\eta_t ;
  • Шаг 5:  LM=n R^{2}, где R^{2} - коэффициент детерминации построенной на предыдущем шаге регрессии.


В работе [Breush, Pagan, 1979] установлено, что при справедливости нулевой гипотезы о гомоскедастичности остатков статистика теста имеет распределение хи-квадрат с p-1 степенями свободы  LM \sim \chi^2 \left (p - 1 \right ).

Реализации

Ссылки

Личные инструменты