Критерий KPSS
Материал из MachineLearning.
(Различия между версиями)
м |
м (оформление) |
||
(2 промежуточные версии не показаны) | |||
Строка 1: | Строка 1: | ||
- | '''Критерий KPSS''' (KPSS test) — критерий, используемый для проверки на стационарность наблюдаемого временного ряда. | + | '''Критерий KPSS''' (KPSS test) — критерий, используемый для проверки на стационарность наблюдаемого [[Временной ряд|временного ряда]]. |
Критерий назван по первым буквам ученых Квятковский-Филлипс-Шмидт-Шин (Kwiatkowski–Phillips–Schmidt–Shin), которые ввели его в 1992 году. <ref name="KPSS"> Kwiatkowski, D., P. C. B. Phillips, P. Schmidt, and Y. Shin. "Testing the Null Hypothesis of Stationarity against the Alternative of a Unit Root." Journal of Econometrics. Vol. 54, 1992, pp. 159–178. </ref> | Критерий назван по первым буквам ученых Квятковский-Филлипс-Шмидт-Шин (Kwiatkowski–Phillips–Schmidt–Shin), которые ввели его в 1992 году. <ref name="KPSS"> Kwiatkowski, D., P. C. B. Phillips, P. Schmidt, and Y. Shin. "Testing the Null Hypothesis of Stationarity against the Alternative of a Unit Root." Journal of Econometrics. Vol. 54, 1992, pp. 159–178. </ref> | ||
Строка 30: | Строка 30: | ||
== Реализации == | == Реализации == | ||
- | |||
* MATLAB: В версии 2013b и выше встроен пакет методов [http://www.mathworks.com/help/econ/index.html Econometrics Toolbox], в котором реализована функция [h,pValue] = kpsstest(___) <ref name="kpsstestmatlab"> [http://www.mathworks.com/help/econ/kpsstest.html KPSS test for MATLAB]</ref>. | * MATLAB: В версии 2013b и выше встроен пакет методов [http://www.mathworks.com/help/econ/index.html Econometrics Toolbox], в котором реализована функция [h,pValue] = kpsstest(___) <ref name="kpsstestmatlab"> [http://www.mathworks.com/help/econ/kpsstest.html KPSS test for MATLAB]</ref>. | ||
- | |||
* R: в пакете [http://cran.r-project.org/web/packages/tseries/index.html tseries] реализован метод для вычисления критерия KPSS kpss.test(x) <ref name="kpsstestR"> [http://hosho.ees.hokudai.ac.jp/~kubo/Rdoc/library/tseries/html/kpss.test.html KPSS test for R]</ref>. | * R: в пакете [http://cran.r-project.org/web/packages/tseries/index.html tseries] реализован метод для вычисления критерия KPSS kpss.test(x) <ref name="kpsstestR"> [http://hosho.ees.hokudai.ac.jp/~kubo/Rdoc/library/tseries/html/kpss.test.html KPSS test for R]</ref>. | ||
- | |||
== Пример использования == | == Пример использования == | ||
Строка 46: | Строка 43: | ||
== Ссылки == | == Ссылки == | ||
- | |||
<references /> | <references /> | ||
* Hamilton, J. D. Time Series Analysis. Princeton, NJ: Princeton University Press, 1994. | * Hamilton, J. D. Time Series Analysis. Princeton, NJ: Princeton University Press, 1994. | ||
[[Категория:Прикладная статистика]] | [[Категория:Прикладная статистика]] | ||
+ | [[Категория:Статистические тесты]] | ||
[[Категория:Регрессионный анализ]] | [[Категория:Регрессионный анализ]] |
Текущая версия
Критерий KPSS (KPSS test) — критерий, используемый для проверки на стационарность наблюдаемого временного ряда.
Критерий назван по первым буквам ученых Квятковский-Филлипс-Шмидт-Шин (Kwiatkowski–Phillips–Schmidt–Shin), которые ввели его в 1992 году. [1]
Содержание |
Определение
Если рассматриваемый ряд имеет вид:
где
- — коэффициент тренда,
- — некоторый стационарный процесс,
- — некоторый независимый и одинаково распределенный с процесс с математическим ожиданием 0 и дисперсией .
Выдвигаются две конкурирующие гипотезы:
- : временной ряд являются стационарным (или, аналогично ),
- : временной ряд не являются стационарным ().
Вычисляем статистику:
- ,
где
- — размер выборки,
- — стандартная ошибка в форме Ньюи-Уеста (Newey–West estimate) [1]
Реализации
- MATLAB: В версии 2013b и выше встроен пакет методов Econometrics Toolbox, в котором реализована функция [h,pValue] = kpsstest(___) [1].
- R: в пакете tseries реализован метод для вычисления критерия KPSS kpss.test(x) [1].
Пример использования
- a = 1:100;
- b = normrnd(50, 20, 100, 1);
- [~,pValuea] = kpsstest(a);
- [~,pValueb] = kpsstest(b);
Полученные значения p-value 0.1 и 0.001 соответственно, то есть гипотеза о стационарности в первом случае отклоняется, во втором - нет.
Ссылки
- Hamilton, J. D. Time Series Analysis. Princeton, NJ: Princeton University Press, 1994.