Участник:Oleg Bakhteev
Материал из MachineLearning.
(→Весна 2014, 8 семестр) |
(→Весна 2014, 8 семестр) |
||
Строка 9: | Строка 9: | ||
''Работа посвящена восстановлению ежегодных изменений рейтингов студентов при собеседовании в учебный центр. Рассматривается выборка, состоящая з экспертных оценок студентов, проходивших собеседование в учебный центр в течение нескольких лет и итоговых рейтингов студентов. Шкалы экспертных оценок меняются из года в год, но шкала рейтингов остается неизменной. Требуется восстановить ранжирующую модель, не зависящую от времени. Задача сводится к восстановлению панельной матрицы (то есть матрицы объект–признак–год), ставящей во взаимное соответствие некоторого студента (или усредненный “портрет” студента) и его предполагаемую оценку на собеседованиях за каждый год, и исследованию ранжирующей модели, полученной на основе этой матрицы, а так же анализу ее устойчивости на протяжении нескольких лет. Предлагается метод восстановления панельной матрицы, основанный на решении многомерной задачи о назначениях. В качестве метода восстановления ранжирующей модели используется алгоритм многоклассовой классификации с отношением полного порядка на классах и алгоритм ранжирования, основанный на методе опорных векторов.'' <br/> | ''Работа посвящена восстановлению ежегодных изменений рейтингов студентов при собеседовании в учебный центр. Рассматривается выборка, состоящая з экспертных оценок студентов, проходивших собеседование в учебный центр в течение нескольких лет и итоговых рейтингов студентов. Шкалы экспертных оценок меняются из года в год, но шкала рейтингов остается неизменной. Требуется восстановить ранжирующую модель, не зависящую от времени. Задача сводится к восстановлению панельной матрицы (то есть матрицы объект–признак–год), ставящей во взаимное соответствие некоторого студента (или усредненный “портрет” студента) и его предполагаемую оценку на собеседованиях за каждый год, и исследованию ранжирующей модели, полученной на основе этой матрицы, а так же анализу ее устойчивости на протяжении нескольких лет. Предлагается метод восстановления панельной матрицы, основанный на решении многомерной задачи о назначениях. В качестве метода восстановления ранжирующей модели используется алгоритм многоклассовой классификации с отношением полного порядка на классах и алгоритм ранжирования, основанный на методе опорных векторов.'' <br/> | ||
'''Публикация'''<br/> | '''Публикация'''<br/> | ||
- | O. Y. | + | Bakhteev O.Y., Strijov V.V. Panel matrix and ranking model recovery using |
mixed-scale measured data // Omega: The International Journal of Management Science, 2014 (подготовлено к подаче). [http://sourceforge.net/p/mlalgorithms/code/HEAD/tree/Group074/Bakhteev014UniversityRanking/doc/BakhteevReport.pdf?format=raw PDF] | mixed-scale measured data // Omega: The International Journal of Management Science, 2014 (подготовлено к подаче). [http://sourceforge.net/p/mlalgorithms/code/HEAD/tree/Group074/Bakhteev014UniversityRanking/doc/BakhteevReport.pdf?format=raw PDF] |
Версия 18:26, 29 декабря 2014
Бахтеев Олег Юрьевич
МФТИ, ФУПМ
Кафедра «Интеллектуальные системы»
Направление «Интеллектуальный анализ данных»
bakhteev@phystech.edu
Весна 2014, 8 семестр
Восстановление панельной матрицы и ранжирующей модели по метризованной выборке в разнородных шкалах
Работа посвящена восстановлению ежегодных изменений рейтингов студентов при собеседовании в учебный центр. Рассматривается выборка, состоящая з экспертных оценок студентов, проходивших собеседование в учебный центр в течение нескольких лет и итоговых рейтингов студентов. Шкалы экспертных оценок меняются из года в год, но шкала рейтингов остается неизменной. Требуется восстановить ранжирующую модель, не зависящую от времени. Задача сводится к восстановлению панельной матрицы (то есть матрицы объект–признак–год), ставящей во взаимное соответствие некоторого студента (или усредненный “портрет” студента) и его предполагаемую оценку на собеседованиях за каждый год, и исследованию ранжирующей модели, полученной на основе этой матрицы, а так же анализу ее устойчивости на протяжении нескольких лет. Предлагается метод восстановления панельной матрицы, основанный на решении многомерной задачи о назначениях. В качестве метода восстановления ранжирующей модели используется алгоритм многоклассовой классификации с отношением полного порядка на классах и алгоритм ранжирования, основанный на методе опорных векторов.
Публикация
Bakhteev O.Y., Strijov V.V. Panel matrix and ranking model recovery using
mixed-scale measured data // Omega: The International Journal of Management Science, 2014 (подготовлено к подаче). PDF